
The

Colne Robotics

A R M D R O I D

Construction and Operation Manual

Published by

COLNE ROBOTICS LIMITED
1 Station Road
Twickenham

Middlesex TW1 4LL
[C] Copyright 1981



CONTENTS Page No.

*1-1*

*2-l*
*2-2*
*2-3*

*2-4* - *2-8*
*2-9* - *2-14*

*3-1* - *3-3*
*3-3 * - *3-3 *
*3-4* - *3-5*

4. Software

4.1 Introduction *4-l*
4.2 Loading *4-l*
4.3 General Description *4-l*
4.4 Command Explanation *4-l* - *4-4*
4.5 Introductory Demonstration Sequence *4-5*
4.6 Detailed Software Description *4-6* - *4-48*
4.7 Applications *4-48* - *4-58*

1. Introduction

2. Mechanics

2.1 Description
2.2 Technical Hints
2.3 Tools
2.4 Mechanical Parts
2.5 Assembly

3. Electronics

3.1 Description
3.2 Component List
3.3 Assembly



The development of Armdroid I arose as a result of a survey of
industrial robots. It became apparent that educationalists and
hobbyists were starting to show interest in medium and small
sized robotic devices. There was however no robot on sale any-
where in the world at a price suitable to these markets. The
Armdroid micro-robot now fulfils this role, providing a
fascinating new microcomputer peripheral.

Purchase of the robot in kit form enables the assembler to
understand its principles and allows for modification, although
of course the machine may also be purchased ready assembled.

This manual has been compiled as a guide to the construction and
operation of your Armdroid micro-robotic arm, and should be
followed carefully. There are separate sections covering both
the mechanical and electronic aspects of the robot, as well as
the specially written software.

*1-1*

INTRODUCTION





MECHANICS

2.1 Description

The ARMDROID consists of five main parts.

The base

The base performs not just its obvious function of supporting
the rest of the arm. It also houses the printed circuit boards
and the motor that provides the rotation.

The Shoulder

The shoulder, which rotates on the base by way of the main
bearing, carries five motors and their reduction gears which
mesh with the reduction gears on the upper arm.

The Upper Arm

The lower end of the upper arm carries the gears and pulleys
that drive the elbow, wrist and hand. It rotates about a
horizontal axis on the shoulder.

The Forearm

The forearm rotates about a horizontal axis on the upper arm
and carries the wrist bevel gears.

The Wrist and Hand

The two wrist movements, the rotation about the axis of the hand
("twist") and the rotation of the hand about a horizontal axis
("up and down"), depend on a combination of two independent
movements. The twist is accomplished by rotating both bevel
gears in opposite directions, while the up and down movement
is done by turning the gears in the same direction. Combinations
of the two movements can be got by turning one bevel gear more than
the other.

The three fingered hand with its rubber fingertips has a
straightforward open and shut movement.

*2 - 1*



2.2 Technical Hints

1. FITTING BELTS ONTO PULLEYS

Fit belt over small pulley first and then work onto unflanged
edge of large pulley a little at a time - do not attempt to get
belt fully onto pulley until you have got it on by one or two
millimetres all round. (Belts can be damaged if they are
crimped). When fitted belts should not be drum tight there should
be just a little play, or friction will rear its ugly head again.

2. FITTING SWITCHES

On initial fitting do up bolts only enough to hold switches in
position. Finally after gears are fitted swing switches so that
they clear gears by approximately one millimetre and finally tighten.

3. FITTING PULLEYS TO MOTORS

You will find the motor shafts have end float with a light spring
action pulling the shaft in. Do not pull shaft out against this
spring when fitting pulley as this will cause friction and loss of
effective motorpower.

4. LUBRICATION

Use light oil (three in one or similar), just a drop on all parts
that slide or pivot. DELRIN is a self lubricating material but the
friction is a lot lower with a drop of oil. We only have
limited power from the motors so we want to make the most of it,
so work spent on eliminating friction will pay performance
dividends. Check all bores and bearings for free running - any
tightness is usually caused by burrs or stray bodies in bores.
Remove burrs from Delrin with a sharp knife, from metal with a
scraper.

Disposable hypodermic is ideal for lubricating - scrounge one from
your local friendly GP or Hospital.

*2 - 2*



Micro-switches are included in the assembled and unassembled
Armdroid packages as optional extras. It must be stressed,
however, that the machine will function perfectly well without the
micro-switches, but a check must be kept on the number of complete
revolutions of the base. Any more than 1.5 turns will put a
strain on the stepping motor leads where they connect to the
printed circuit boards.

To prevent any difficulty in the fitting of reed-switches
after the initial assembly the magnets will be inserted
during manufacture. This will save the dismantling of the
Armdroid in the field. Magnets will be included in all the
kits.

There will be a nominal charge of £15 for the inclusion of reed-
switches in both the assembled and unassembled Armdroids.

PART NUMBERS INVOLVED: *O9*1O*15*16*18/16*18/12*

REED SWITCH POLICY

*2-2a*



2.3 TOOLS LIST INC. Lubricants etc

General and small circlip pliers

7mm spanner
5.5mm spanner

supplied
supplied

Metric steel rule, (part identification)

Hypodermic syringe or small oilcan and 3 in 1 oil

"Superglue" and if possible "Loctite"

Cold vaseline or cycle bearing grease

Tweezers

Allen keys for M3 grub screws - supplied
M4 grub screws - supplied
M4 bolts - supplied

Lightweight hammer (fitting rollpins)

*2 - 3*



2.4 ASSEMBLY

Description of item Part No

Base 01

Base Bearing support column 02

Base motor 03b

Base motor short pulley 20 tooth 04b

Base reduction gear spindle 05

Turned thick wide washer 16mm x 2mm 06

Reduction gear 07

Base belt (medium length) 94 teeth 08m

Base switch support 12mm x 11mm 09

Base switch 10

Shoulder pan 11

Shoulder bearing ring 12

Base gear (large internal dim) 13

Bearing adjusting ring 14

Hand motor support bracket 15

Hand motor 03h

Hand switch bracket 16

Motors - Upper arm 03u

Fore arm 03f

Wrist action 03w

Motor pulleys - Upper arm 04u

Fore arm short 14 tooth 04f

Wrist action long 20 tooth 04w

Hand short 20 tooth 04h

*2 - 4*



DESCRIPTION OF ITEM Part No

Shoulder Side Plates

Switch support bar 107mm x M3 at ends

Support bar spacers M3 clearance X

Motor support bracket stiffener
107mm x M3 at ends

Support Bar spacers

Reduction gears

Reduction gear spindle 96mm x 6mm

Drive belts long = 114 teeth
medium = 94 teeth
short = 87 teeth

Upper Arm Drive Gear
small internal dim no drum

Upper arm side plates

Upper arm brace

Gears wrist action

hand action

fore arm

Idler pulley

Shoulder pivot 96mm x 8mm spindle

Fore arm side plates

Fore arm brace

Fore arm pulley

017

019

018/16

018/12

019

018/54

018/41

020

021

08/l
08/m
08/s

021

022

023

024

025

026

027

029

030

031

032

Hand
Fore/Upper arm
Wrist action

*2 - 5*



DESCRIPTION OF ITEM Part No.

Elbow Idler pulleys hand

wrist 033

Elbow spindle 65mm x 6mm 034

Wrist bevel gear carrier 035

Wrist guide pulleys 036

Wrist bevel gears (flanged) 037

Wrist pivots . 038

Hand bevel gear (no flange) 039

Finger support flange 040

Hand pivot 041

Finger tip plates 041

Finger cable clamp 042

Small finger spring 043

Finger tip pivot 044

Middle finger plates 045

Middle finger pivot 046

Large finger spring 047

Finger base 048

Long finger pins 16mm x 3mm 050/l

Short finger pins 13mm x 3mm 050/s

Small finger pulleys 051

Large finger pulleys 052

Large hand sheave pulley 053

Small hand sheave pulley 054

Hand sheave pin 055

Finger tip pads 056

Base pan 057

*2 - 6*



DESCRIPTION OF ITEM

Board Spacers

Spacer bars for boards

Rubber feet

Cable springs wrist action short

Cable springs grip, elbow long

Part No.

018/41/54

058

059

060

061

PREPARATION AND FIXINGS ETC

DESCRIPTION OF ITEM Item No.

Magnets 101

Bearing adjustment ring grub screws
M4 x 8mm 102
NB + self made plug to protect the

fine bearing thread

Turned cable clamps 6 x 6mm M3 tapped 103

Cable clamp grub screws M3 x 4 pointed head 104/105

Crimped type cable clamps

crimped eyelets 106

Gear Cable grub screws M4 x 6mm flat head 107

Bushes 8mm bore long with flange

shoulder 108

Shoulder pivot spindle spacer 108a

6mm bore short with flange

- elbow 109
8mm bore long with flange

wrist 110
8mm bore no flange
main gear inserts 111
Gear to sheet metal screws M3 x 6

slot hd CSK 112
Spring pillar and base switch
M3 x 10 cheese head 113

Base bearing to shoulder pan
M4 x 16 CSK socket head 114

*2 - 7*



DESCRIPTION ITEM Item No.

Motor bolts, Base bearing to base
M4 x 10 Elbow spindle hex hd

Hand to finger, hand to bevel gear
M3 x 6 cheese hd

Shoulder spindle
M5 x 10 hex hd

General sheet metal fixing
M3 x 6 hex hd

M4 Nuts

M4 Washers

M4 Shakeproofs elbow spindle

M5 shakeproofs shoulder spindle

M3 Nuts

M3 washers - switches

6mm steel balls - base bearing

Magnetic reed switches

Driver board

Interface board

Edge connector

6mm Washers

Roll pins

4.5mm circlips

3mm circlips

Elbow spacer

115

116

117

118

119

120

121

122

123

124

125

010 (101?)

126

127

128

129

130

131

132

133

*2 - 8*



2.5 ASSEMBLY

Preparation

Study the parts list, drawings and the parts themselves until
you are sure you have identified them all. Assemble the tools
suggested in the list of tools (2.3). Read carefully
technical hints section. Solder 12 inches of ribbon cable to each
motor. Glue magnets (101) into the slots in the reduction gears,
noting that the hand gear (25) needs no magnet. Check that the
adjusting ring (14) of the main bearing screws easily onto its
base. Clean both if necessary. Insert bushes into the arms,
if necessary using a vice, but taking care not to distort the
sheet metal.

Construction

Fit base bearing support (2)
nuts.) NB NUTS INSIDE BASE

column inside base (1). (M4 bolts,

Bolt 1 motor (shorter cable) inside base. (M4 hex bolts, washers
on motor side - nuts on inside). Fit pulley to spindle base of
motor with the grub screw at the top (04b). Fit base reduction
gear spindle (07) to base. (Thick turned washer, M4 hex bolt)
Fit reduction gear and belt. Place a small drop of oil on the
reduction gear spindle before fitting reduction gear.

When fitting belts they should be placed fully on the motor spindle
and worked gently onto the reduction gear, a small section of their
width at a time. (see general hints on lubrication)

Fit base switch support. (M3 hex bolt) NB DRAWING FOR POSITION.
Fit base switch and run wires through adjacent hole. (M3 x 10
cheesehead, washer)

Fit bearing ring (12) (long spigot down) through shoulder base pan
(11) from inside. The base gear (13) fits on the lower face of the pan,
with the magnet at 2 o'clock as seen from inside the pan with the
flange at the top. (M4 countersunk x 16mm bolts, nuts)

(This step and the next are simpler with some help from an
assistant). Put shoulder base pan (gear side up) on to 3in supports
(books etc,) so that the bearing support column can be inserted.
Practise this movement to make sure all is well. Smear vaseline
from a fridge, or grease on the bearing track of the flange, and
using tweezers to avoid melting the vaseline carefully place 24 ball
bearings round the flange, embedding them into grease. There will
be a slight gap when all the balls are in place. Invert the base
and insert the threaded bearing support column inside the bearing
ring taking care not to dislodge any of the balls so that the base
pan meshes with the base gear. Keep the two parts level in the
same relationship by taping the parts together with a piece of wood or
a spanner 5mm thick between the motor pulley and the shoulder
base pan.

*2 - 9*



Large rubber bands can be used instead of tape.
to hold the parts for you will be useful here.

An assistant

Turn the assembly the other way up (the base is now on the bench
with the shoulder base pan above it. Put more grease round the
bearing track and embed 24 more ball bearings in it. Gently
lower the adjusting ring (14) on to the threaded base and then
screw the finger tight, remove with tape, adjust the ring until
the base pan moves freely without play then tighten the grub screw,
inserting a small wood plug to protect the bearing thread. (M4
grub screws)(102). The bearing may need adjusting after some
use as it beds in.

Fit hand motor bracket (15) to shoulder base pan (M3 bolts) then
the hand motor O3h(M4) and the hand motor pulley. Then fit the hand
reed switch-bracket (M3) and the switch (M3 x 10 cheesehead bolts).

Fit motors to the shoulder side plates (17) and feed the cables
through the holes towards the inside. The bolts which are next
to the reduction gears should be placed nut out to prevent the
reduction gears catching on the end of the bolts. Fit correct
pulleys (04u/f/w) to the motor spindles noting which pulleys from
the drawing, tighten the grub screws.

Fit the shoulder plates. This is simplified by loosely tightening
the end bolts to support the weight. Feed the motor cables down
through the main bearing (M3).

Slide switch support (19) bar through spacers (18), switches (101)
and motor support bracket (see drawing for correct order of spacers).
You will need to be able to adjust the position of the reed switches
after the arm is fitted so that they clear the gear wheels
ie tangential to shoulder pivot. Fit the motor support stiffener bar
and spacers. Leave nuts finger tight. (M3 nuts).

Assemble reduction gear support bar (21), assemble with the correct
length drive belts (08s/m/l) over each gear, reduction gears facing
in correct direction and the thin metal M6 washers at either end.
(see drawing) Slide gently into position and bolt in the support
bolts (M4 a 10mm) Fit the belts round the motor pulleys.

Put upper arm drive gear on the outside of the upper arm side plate.
The magnet should be at 1 o'clock, viewed from the gear side of the
arm. (M3 CSK screws x 6mm) Fit a brace to one upper arm side
piece (22), then fit the other side piece to the brace. Fit all
bolts and nuts before tightening any of them. Check 8mm shoulder
spindle (29) slides freely through accute bushes in upper arm side
pieces and through bores of drive gears, pulleys and spacers.
Assemble by sliding shaft from one side and threading gears,
pulleys and spacers on in the correct order of orientation - use
drawing.

*2 - 10*



Fit pulley (32) to the outside of the forearm side plate (30)
(M3x6mm)(countersunk screws). Fit a brace to one forearm side
plate, then fit the other side plate to the brace. Check for
squareness before finally tightening bolts.

Put elbow pivot through bushes and an 8mm bar through wrist bushes.
(M3 bolts, nuts) Check fit before assembly. Assemble the pulleys
(33) on the elbow spindle (34), lubricate and fit it to the large
arm, and bolt through into spindle. (M4 bolts, washers)

Assemble the wrist bevel gear carrier (35) and wrist pulleys (36)
and then tap the roll pins gently home with a small hammer,
supporting aluminium gear carrier to prevent distortion.

Fit the wrist gears on the bushes (37) from the outside. Fit
bevel gear carrier (35) between the wrist bevel gears (37), line
up holes in end of wrist pivot (38) bores with tapped hole in
carrier by peering down pivots. If you do not have a screw gripping
or magnetic driver use a little piece of masking tape or sellotape
to fix M3 cheesehead screw to the end of your screwdriver in such
a way that it will pull off after tightening - check gears pivot
freely on pivots and that the whole assemble can pivot in oilite
bushes (drops of oil on faces of gears and pivots)

Screw the finger support flange (40) to the hand bevel (39).
(M3 x 6mm cheesehead screws) Screw the hand pivot (41) to the bevel
gear carrier (35). Tighten on a drop of loctite if available,
gently by turning a pair of pliers inside it. The bevel gears should
be positioned with their grub screws pointing towards the hand when
the hand and the forearm are in line (see drawing).

Assemble the fingertip (42) and cable clamp (43) with the small
spring (44) on the pivot (45), and clip together with large
circlips on the cable clamp. The spring should be positioned so
that the "back" of the spring is on the knuckle side of the
fingertip, thus tending to open the hand.

Assemble the middle finger (46) and its pivot (47) with the large
spring (48). Fix to the finger base (49) with the long pin (50/L)
(16mm x 3mm) and two small circlips (see drawing). Fix one
circlip to the pin before one begins to assemble.

Join the fingertip to the middle section with the short pin (50/S)
(13mm x 3mm) and two small circlips.

Cut off one end of the tip spring about 8mm-10mm beyond its hole.
Level with its hole bend the spring through a right-angle to secure
it. Repeat at the other end. Trim the inner end of the middle
finger spring flush with the end of the finger end and treat the
outer end as above.

*2 - 11*



Fit the small pulley (51) to the finger middle section using a short
pin (13mm x 3mm) and two small circlips. Fit the larger pulley (52)
to the finger base with a long pin (16mm x 3mm) and two small
circlips.

Screw the finger base to the finger support flange. Make sure that
the fingers are evenly spaced and do not interfere with each other,
and then tighten. (M3 x 6mm cheesehead)

Assemble the large and small hand sheave pulleys using the large
circlip on hand sheave pin (55).

*2 - 12*



CABLE THREADING

Slide arm into shoulder, you will need to align the reduction
pulleys between the main drive gears as you lower the arm into
place, and assemble using M5 hex head bolts and shakeproof
washers. Tighten and check the reduction gears "mesh" correctly
and the arm moves freely.

Connect grip action cable tail to shoulder base pan via the spring
correctly placed over the pulley and tension using the normal method
with the cable clamp.

Glue strips of rubber to finger tips using superglue.

The driver and interface board should be bolted to the base pan
using the spacer bars (58) and spacers. Bolt base pan (57) to
base (M3 x 6mm hex head).

Hints: Useful tools are:

a)

b)

2 or 3 'bulldog clips' to maintain the tension in the cable
over completed sections of each cable while the remainder
is threaded. Masking tape can also be used for this purpose,

Ends of the cable can be prevented from fraying by placing
a drop of 'superglue' on the end of area where it is to be
cut. The excess should be wiped off on a piece of paper.

NB. This process also stiffens the end which is useful when
threading the cable through the pulleys.

c) Ensure all grub screws are in position but are not obstructing
the cable holes. Also check there are no burs remaining
from machining blocking the holes.

d) The cables can be threaded before the arm is bolted for the
shoulder which eases the problems of access considerably.
The 'grip action' cable tail can be taped or clipped to the
arm and connected and tensioned with its spring after the
arm is fitted to the shoulder,

e) When tensioning the cable, if it is passed through the clamp
and back, then connected to the spring adequate tension can be
applied by pulling the 'free tail' and then nipping it with the
grub screw. A friend will be useful if around, but it is
quite possible without. The correct tension can be easily
judged, as when completed the coils of the spring should be
just separated, though this is not critical.

*2 - 13*



f)

g)

h)

First

During threading the correct 'route' can be ascertained
from the expanding drawings. It is very important these
should be followed exactly, especially the position of the
grub screws when they are tightened on the cable. If this is
wrong it will affect the performance of the arm.

Care should be taken to avoid the cable kinking or crossing
itself on the drums.

Experience has shown that the best order to thread the
cables and lengths to use. (Excess can be trimmed easily
later but makes tensioning simpler)

- Wrist cables one at a time.

Second - Elbow cable (set up the spring
pillar first - M3 x 10mm cheesehead
and 2 M3 hex full nuts) attach
crimped cable clamp to forearm first
using M3 x 10 cheese head and two
nuts as a cable pillar.

Third Single finger cable (fix to the
hand sheave pulley using M3 x 6mm
cheesehead and crimped cable clamp.

Fourth - Double finger cable (loop over
small hand sheave pulley on grip
action pulley and adjust so that
G A P is even when pulleys are
evenly positioned).

Fifth - Grip action cable (start at end
fixed in cable drum and stick
other end to arm while fitting
it to the shoulder then tension
with the spring to the shoulder
base pan).

1.47m (each)

0.95m

0.18m

0.36m

1.3 m

i) Ends using the crimped cable eyelets should be threaded
through the eyelet and a small thumb knot tied to prevent
the cable slipping before crimping the bracket using
crimping or ordinary pliers. So not crimp too tight
or you may cut through cable, though KEVLAR is very tough,

*2 - 14*





ELECTRONICS

3.1 Description

The Interface

To enable the Armdroid to function with as wide a range of
microprocessor equipment as possible, the interface is designed
round a standard 8-bit bidirectional port. This may be latched
or non-latched. If non-latched, the interface will normally
be used to input data to the micro.

In the output mode the port is configured as follows. The eight
lines are defined as four data bits (D8-D5), three address bits
(D4-D2) and one bit (Dl) to identify the direction of data
travel on the port. Four data lines are provided so that the
user can control the stepper motor coils direct from computer.

The address bits are used to channel the step pattern to the
selected motor. The three address bits can define eight states,
of which 1-6 are used to select one of the motors, while states
0 and 7 are unallocated.

Dl indicates the direction of data travel, to the motors when
Dl is low, from the microswitches, if installed, when Dl is
high. The transition of Dl from high to low generates a pulse
which causes the step pattern to be latched into the addressed
output latch.

In the input mode D8 - D3 are used to read the six microswitches
on the arm. These reed switches and magnets provide a "zero"
point for each of the movements of the arm, which can be used as
reference points for resetting the arm in any position before a
learning sequence begins.

D2 is spare. It is an input bit which can be buffered and used
for an extra input sensor, allowing the user to connect a
'home brew' transducer to the system.

The interface circuitry consists of twelve TTL components which
decode the data and route it out to the selected motor driven
logic. ICl and IC2 buffer the data out to the decoder and
latches. IC6 decodes the three input address bits to provide
eight select lines, six of which are for the latches IC7 - IC12.

*3 - 1*



INTERFACE ONLY

Dl is buffered and fed into a monostable (IC4) to generate
a clock pulse. This causes the decoder to provide a latch
pulse for approximately 5OOns to the addresses motor control
latch. Dl is tied to pull-up resister (Rl) so that the line
is high except when are output from the microprocessor. The
buffers ICl and IC2 are enabled by the buffered output of bit
1 so that data are fed to the latch inputs only when bit 1 is
low. The bit 1 buffer is always enabled because its enable
is tied low.

The microswitch inputs are buffered by IC5 which is enabled
by the complemented output of bitl, so that when bitl is high
IC5 is enabled, and the contents of the microswitches will be
input to the microprocessor. This allows the user to operate
the arm under bit interupt control, giving instant response to
a microswitch change and avoiding having to poll the micro-
switches. The six microswitch inputs are pulled up; thus the
switches can be connected via only one lead per switch, with
the arm chassis acting as ground.

THE MOTOR DRIVERS

the motor drivers are designed so that the arm can be driven
from the output of the computer interface circuitry.

The six motor driver stages need two power supplies: 15v at
about 3A and 5v at 150 MA.

The four waveforms QA-QD are then fed into IC's 13-16 which
are 7 x Darlington Transistor IC's. These provide the high
current needed to drive the stepper motor coils, the driving
current being about 300 MA at 15v.

*3 - 2*



INTERFACE DRIVER BOARD

ITEM VALUE QUANTITY

Resistors

Rl
R2
R3-8

R9
RIO
Rll
R12
R13
R14
R15-R2O

Capacitors

Cl
C2
C3-C15

Semiconductors

IC1
IC2
IC3
IC4
IC5
IC6
IC7-IC12
IC13-IC16
IC17
ZD1

Miscellaneous

1K0
1OK
2K2 resitor

network
1K8
1K8
1K8
15K
1OK
18ohm 5w
1KO

lOOp polystyrene
l.Ovf Tant
lOnf ceramic

74LS 125
74LS 125
74LS 04
74LS 123
74LS 366
74LS 138
74LS 175
ULN2oo3A
UA 7805
BZX 13v ZENER

1

3
1
2
1
6

1
1

13

MXJ 10 way edge connector
5 way PCB plug and socket connector
Through Pins
16 pin IC sockets
14 pin IC sockets
4 way modified PCB plug and socket

*3 - 3*



GENERAL ASSEMBLY SEQUENCE FOR THE PC BOARD

A Fit all of the through pins to the board.

B Fit and screw the 5v regulator to the board.

C Identify and fit the resistors and the 13v zener to the
board. The black band v points to the motor connectors
(on the zener DIODE).

D Identify and fit all capacitors to the board.

E Solder the 2k2 resistor network, IC sockets, and the
4 and 5 way PCB plugs to the board.

G Solder the 10 way socket to the board.

NOTE:

Refer to the overlay diagram and parts list to ensure that the
resistors, capacitors, IC,s and other parts are inserted into
the correct locations on the PC Board.

BASIC BOARD CHECKS

A Check the board for dry joints and re-solder any found.

B Hold the board under a strong light source and check the
underside to ensure there are no solder bridges between
the tracks.

FITTING THE PC BOARD TO THE BASE OF THE ROBOT

The PCB should be fitted to the base plate using the nylon
pillars provided.

MOTOR CONNECTION

Connect the motors to the 5way sockets, ensuring correct 15v
polarity, via the ribbon cable, refering to the diagram provided
to ensure correct connection.

POWER CONNECTION

Connect the power to the modified 4way socket ensuring correct
polarity as shown below.

Polarising pin

Blue - Pin 1 on I/P connector=Ov

NOTE

15v = Brown = Pin 2 on I/P connector

A number of diagrams are given, explaining in detail the intern-
connections between the motors and the PCB, if the motors are
connected in the manner shown then the software provided will
map the keys 1-6 and q,w,e,r,t,y to the motors in the following way

1, q, = GRIPPER.

4, r, = forearm.

2, w, = left wrist.

5, t, = shoulder.

3, e, = right wrist.

6, y, = base.

as shown in the diagram, the two middle pins of the stepper motors
should be connected together and to 15v.

*3 - 4*



c
Motor Connection And Designation Layouts

+15v

QD

QB

QC

QA
Ribbon Cable To Stepper Motor
Connections

Qa Black or Green

Qb Red or Purple

Qc Brown or Blue

Qd Orange or Grey

+15v Yellow or white

Motor Assignments To Functions

Motor 1 = Grip

Motor 2 = Left Wrist

Motor 3 = Right Wrist

Motor 4 = Elbow

Motor 5 = Shoulder

Motor 6 = Base

X pin 9 IC,s 13,14,15,16

* 3 - 5 *





4. SOFTWARE

4.1 Introduction

A machine code program, LEARN , to drive the ARMDROID has been
specially written. It was designed for the Tandy TRS-8O Model 1
Level 11, and the loading instructions given here apply to that
computer. But the program can be easily adapted to any Z80
microprocessor with the necessary port, and versions made
available for the leading makes with variations of these instructions
where appropriate. But of course users can write their own software
in whatever language they choose.

4.2 Loading

When in Basic type SYSTEM, press ENTER, answer the '*' with LEARN and
then press ENTER again. The cassette tape will take about 1.5
minutes to load. Answer the next '*' with / 17408 and press ENTER.

4.3 General Description

LEARN is a menu-oriented program for teaching the ARMDROID a
sequence of movements which it will then repeat either once or as
many times as you like. The program is divided into four sections,
one for learning the sequence and for fine-tuning it, one to save
the sequence on tape and load it again , one for moving the arm
without the learning function, and finally two exit commands.

We suggest that, if this is your first encounter with the program,
you should read quickly through the commands without worrying too
much about understanding all the details. Then go to Section 4.5
and follow the 'Sequence for Newcomers'. This will give you a good
idea of what the program does. After that you can begin to discover
some of the subtleties of planning and fine-tuning sequences of
movements.

4.4 Explanation

L(EARN)

Stores a sequence of manual movements in memory. The arm is moved
using the commands explained under M(ANUAL) . You can exit the command
by pressing 0 (zero) , press G(0), and the arm will repeat the
movement you have taught it.

On pressing L(EARN) you will be asked whether you want to S(TART)
again or C(ONTINUE) from the current position. The first time press
S(TART) . The arm is then free to be moved by hand without the
motors' torque preventing you. Move it to a suitable starting
position, then press the space bar. You will find that you cannot
now move the arm by hand.

*4 - 1*



To add a sequence already in memory press C(ONTINUE) instead of
S(TART).

Using the manual commands, move the arm to another position. As it
goes the computer is adding up the steps each motor is making, either
forward or back, and storing the data in memory. (holding the space
bar down during manual control slows the movement)

Exit by pressing 0 (zero).

D (ISPLAY)

Displays the sequence stored in memory.
with the E(DIT) command.

The sequence can be edited

The six columns of figures correspond to the six motors, and the
order is the same as that of the 1-6/Q-Y keys (see M(OVE). The
first row (RELPOS) shows the current position. Each row represents
a stage of the movement, and the actual figures are the number of
steps each motor is to make, positive for forward, negative for
reverse. The maximum number of steps stored in a row for one motor
is +127 or -128, so if a movement consists of more than this number
it is accomodated on several rows.

Movements of the arm can be fine-tuned by editing (see E(DIT))
the figures on display until the arm is positioned exactly.

Scrolling of the display can be halted by pressing 0 (zero). To
continue scrolling, press any other key. To display the figures
one after the other, keep pressing 0.

E(DIT)

Allows the user to change the figures in the memorised sequence.

Truncate a sequence by pressing R(0W COUNT), then ENTER, then the
number of the last row you want performed, and finally ENTER. This
clears the memory from the next step onwards, so you should only do
this if you do not want the rest of the sequence kept in memory.

By pressing M(OTOR STEP), you can change any of the numbers in any
row and column.

S(ET ARM)

Sets the current position of the arm as the 'zero' or starting position.

When pressed from the Menu, it simply zeroes the first row of the
display.

S(ET ARM) has another function. During a L(EARN), pressing S(ET ARM)
at any moment when the arm is at rest will ensure that the movements
before and after are separated from each other instead of being merged.
This is the way to make quite sure that the arm passes through a
particular point during a sequence. Try the same two movements
without pressing S(ET ARM), and note the difference in the display.

*4 - 2*



It is important to realise that, if a sequence has been memorised
and S(ET ARM) is pressed from the Menu when the arm is not in its
original starting position, pressing G(0) will take the arm through
the sequence but from the new starting point. This can be useful
for adjusting the whole of a sequence (perhaps slightly to right or
left), but it can lead to the arm running into objects if the new
starting point is not selected with care.

W(RITE)

Writes a memorised sequence to cassette tape.

R(EAD)

Reads a previously written sequence from cassette tape into memory.

C(HECK)

Compares a sequence written to cassette tape with the same sequence
still in memory, to verify the tape.

G(0)

Moves the arm through a memorised sequence, either once or repeatedly.

It is important to make sure that the starting point in memory is
the right one, or the sequence may try to take the arm into
impossible positions, (see S(ET ARM)

T(0 START)

Takes the arm back to the zero or starting position.

F(REE)

Removes the motors' torque from the arm, thus allowing it to be
moved by hand.

M(ANUAL)

Gives the user control of the movements of the arm direct from the
keyboard. It is used (a) for practising manual control before
L(EARN)ing, (b) for trying new combinations of separate movements,
and (c) for moving the arm to a new starting position before pressing
S(ET ARM). Holding the space bar down slows the movement by a factor of
about 3.

The motors are controlled with the keys 1-6/Q-Y. The keys operate in
pairs, each pair moving a motor forwards and backwards. Any combination
of the six motors may be moved together (or of course separately),
but pressing both keys of a pair simply cancels any movement on
that motor.

The geometry of the arm is designed to give the maximum flexibility
combined with maximum practicality. A movement of one joint affects
only that joint: with some designs one movement involuntarily
produces movement in other joints.

*4 - 3*



It is a feature of the ARMDROID that it has a so-called 'parallelogram'
operation. Starting with the upper arm vertical, the forearm
horizontal and the hand pointing directly downwards, the shoulder
joint can be rotated in either direction and the forearm and hand
retain their orientation. Equally the forearm can be raised and
lowered while leaving the hand pointing downwards. Moving the arm
outwards and down by rotating both the shoulder joints together
still leaves the hand vertical. This is of vital importance
for simplifying the picking and placing of objects.

The motors controlled by the keys are:

1/Q:
2/W:
3/E:
4/R:
5/T:
6/Y:

Gripper
Wrist left
Wrist right
Forearm
Shoulder
Base

B(OOT)

Returns the computer to the program start and clears the memories.

Q(UIT)

Returns the computer to TRS8O System level.

*4 - 4*



ARM TRAINER MK2AL

DIRECT FULL STEP MOTOR CONTROL

FOR TRS80 MODEL 1, LEVEL 11

BY ANDREW LENNARD

* ** July 1981 ***

4-4a



S E C T I O N 1

S Y S T E M E Q U A T E S

B
S Y S T E M V A R I A B L E S

S Y S T E M C O N S T A N T S

4 - 4b

A

C



4.5 INTRODUCTORY DEMONSTRATION SEQUENCE

1. After loading the program, the screen shows the menu. Press
L to enter L(EARN).

2. Screen: START AGAIN OR C(ONTINUE) FROM PRESENT POSITION,
(.) TO EXIT. Press S

3. Screen: " ARM RESET
ARM NOW FREE TO MOVE
TYPE SPACE BAR WHEN READY, OR FULL STOP TO EXIT"

Now move the arm so that both arm and forearm are vertical
with the hand horizontal. For coarse movements grasp the
forearm or upper arm and move it. For fine adjustments
and for movements of the hand, it is better to use the large
white gear wheels in the shoulder joint. Press the space
bar and the arm will become rigidly fixed.

4. Screen: "*** TORQUE APPLIED ***"
You can now move the arm using the 1-6/Q-Y keys as explained
in the manual section. Try just one movement alone at
first. Now press 0 (zero) to exit from L(EARN). The arm
will return to the starting position, and the Menu appears
on the screen.

5. Screen: Menu. Press D for D(ISPLAY).

6. Screen: Display and Menu. The numbers of steps you applied
to each motor have been memorised by the computer, and these
steps are now displayed see D(ISPLAY) section for
explanation. Press G for G(0).

7. Screen: "DO (F) OREVER OR (O) NCE?. Press O (letter O),
and the arm will repeat the movement it has learnt.

8. Screen: "SEQUENCE COMPLETE" and Menu. Press L.

9. Screen: as 2 above. This time press C. Now you can
continue the movement from this position, using the 1-6/Q-Y
keys as before. Now press 0 (zero). Again the arm returns
to its original position.

10. Screen: Menu. Press D

11. Screen: Display and menu. Your new movement has been added
to your first. Press G.

12. Screen: as 7 above. This time press F. Each time a
sequence is started a full point is added to the row on the
screen. To stop press full point.

This is a very simple demonstration of how complex movements
can be built up, learnt as a sequence and then repeated endlessly
and with great accuracy.

*4 - 5*



SYSTEM EQUATES

PORT

FINAD

PCHR

GCHR

KBD

PUTSTR

CASON

CASOF

RDHDR

READC

WRLDR

WRBYA

MINUS

SPAC

NL

NUMBA

MAXLE

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

0 4

O2B2

0033H

0049H

002BH

28A7H

0212H

01F8H

0296H

0235H

0237H

0264H

' -'

' -'

0DH

30H

10

; ORG

; ARM PORT NUMBER

; SYSTEM RESTART

; SYSTEM PRINT CHARACTER

; SYSTEM GET CHARACTER

; SCAN KEYBOARD

; SYSTEM PRINT STRING

; CASSETTE ON

; CASSETTE OFF

; READ HEADER ON CASSETTE

; READ CHARACTER FROM CASSETTE

; WRITE HEADER TO CASSETTE

; WRITE CHARACTER TO CASSETTE

; ASCII MINUS

; ASCII SPACE

; ASCII NEW LINE

; ASCII NUMBER BASE

; UPPER BOARD FOR ARST ROW COUNTER

1740 8 ; = 4400 TRS80 HEX ADDRESS
; FOR START OF PROGRAM

*4 - 6*



VARIABLES USED

MIN
MAN
STRFG
KEYP
FORFG

COUNT
CUROW

ARRAYS

NUMAR

POSAR

DEFB
DEFB
DEFS
DEFB
DEFB

DEFB
DEFB

DEFS

DEFS

00
00
00
00
00

0000
0000

10

12

CTPCS DEFS 6

TBUF DEFS 6

DRBUF DEFS 6

; Has value of one if number input negative
; If MAN = zero then steps are stored
; If STRFG non zero then store TBUF array
; Set if key pressed in KEYIN Routine
; Set if sequence to be done forever

; Number of motor slices stored
; Pointer to next free motor slice

; Store used for Binary to ASCII Conversion
; Routine CTBAS

; Each two bytes of this six element array
; contain one value which is used to
; keep track of each motor's motion,
; hence the array can be used to reset
; the arm, moving it into a defined
; start position.
; Each 16 bit value stores a motor's
; steps in two's complement arithmetic.

; 6 Bytes, each relating to a motor.
; A number from 1-4 is stored in
; each byte and this is used to
; index the FTABL (see constant definition)

; When learning a move sequence the
; six motors' motions are stored in this
; six byte array. Each byte relates
; to a motor and holds a motor step
; count in the range -128 to +127
; If the motor changes direction or a
; count exceeds the specified range then
; the whole TBUF array is stored in
; the ARST array and the TBUF array
; is cleared.
; TBUF means temporary buffer.

; Each byte relates to the previous
; direction of a motor.

MOTBF DEFS 6

ARST DEFS N*6

; A six byte array used by DRAMT to
; tell which motors are being driven, and
; in which direction.
; Bit zero set if motor to be driven.
; Bit one set if motor in reverse
; Byte zero if motor should not be driven.

; This array holds the sequence that
; the user teaches the system. The array
; consists of N*6 bytes where N is
; the number of rows needed to store the
; sequence.

*4 - 7*



CONSTANTS USED

DEFB 192 ;
DEFB 144 ;
DEFB 48 ;
DEFB 96 ;

; FTABL is a small table which defines the
; order of the steps as they are sent out
; to the arm. To drive each motor the
; DRAMT routine adds the motor's offset
; which is obtained from CTPOS and adds
; this to the FTABL start address -1. This
; will now enable the DRAMT routine to
; fetch the desired element from the FTABL
; array, and this value is then sent to
; the motor via the output port.

*4 - 8*

FTABL



CONSTANTS AND ARRAYS
STRINGS

SIGON
MK (AL2) ***'

RELYQ

SIGOF

ECOMS

COUTS

EDSTR

BADMS

MOTNS

NVALS

QUESS

RORNM

CASRD

QMESS

BOOTS

RELNS

DISPS

NODIS

OVFMS

DONMS

RDMSG

TAPOK

STRST

NOTOR

DEFM

DEFW
DEFB
DEFM
DEFW
DEFW
DEFM
DEFW
DEFM
DEFW
DEFM
DEFB
DEFM
DEFB
DEFM
DEFW
DEFM
DEFB
DEFM
DEFB
DEFM

DEFW
DEFM
DEFB
DEFM
DEFB
DEFM
DEFW
DEFB
DEFM
DEFB
DEFM

DEFW
DEFB
DEFM
DEFB
DEFW
DEFM
DEFB
DEFW
DEFM
DEFW
DEFB
DEFM
DEFW
DEFM
DEFW
DEFM
DEFW
DEFM
DEFW
DEFM

*** COLNE ROBOTICS ARM CONTROLLER

000DH
0DH
'REALLY QUIT? (Y/N)'
00
0D0DH
'YOU ARE NOW AT TRS80 SYSTEM LEVEL'
00
'EDIT (M)OTOR STEP, OR (R) OW COUNT?'
000DH
'NEW UPPER ROW BOUND IS?'
00
'ROW NUMBER?'
00
'*** BAD INPUT VALUE ***'
000DH
'CHANGE STEPS ON WHICH MOTOR?'
00
'REPLACEMENT STEP VALUE?'
00
'LRN, READ, CHECK,WRITE, GO, DISP, BOOT, MAN,
QUIT, SETA, TOST, EDT, FREE
000DH
'DO (F)OREVER OR (O)NCE?'
00
'TYPE SPACE BAR WHEN READY, OF FULL STOP TO EXIT
00
'PARDON'
000DH
0DH
'WANT TO RE-START (Y/N)?'
'START AGAIN OR (C)ONTINUE FROM CURRENT POSITION
(.) TO EXIT
000DH
0DH
' *** MOVEMENT ARRAY DISPLAY *** '
0DH
000DH
'*** NO SEQUENCE IN STORE ***'
0DH
000DH
'NO MORE ARM STORE LEFT, DELETE OR SAVE?'
000DH
0DH
'SEQUENCE COMPLETE'
000DH
'*** READ ERROR ***'
000DH
'*** TAPE OK ***'
000DH
'ARM RESET'
000DH
'ARM NOW FREE TO MOVE'

*4 - 9*



TORMS

POSST

DEFB
DEFB
DEFM
DEFW
DEFM
DEFB

000DH
0DH
'*** TORQUE APPLIED ***'
000DH
'RELPOS='
00

*4 - 1O*



4-10b



COMMAND INDEX

STARM Program entry point

LEARN Learn a sequence command

EDIT Edit a sequence command

READ Read in sequence from tape command

WRITE Write sequence to tape command

CHECK Check stored sequence command

BOOT Re-start system command

FINSH Exit from system command

SETARM Set start position command

TOSTM Move arm to start position command

FREARM Free all arm joints

MANU Go into manual mode

GO Execute stored sequence command

DISPLAY Display stored Sequence command

*4 - 11*



MAIN LOOP

; Program start

STARM

QUES1

CALL
LD
CALL
CALL
CALL
CALL
LD
CALL
CALL
CALL
CP
JR
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
CP
JP
LD
CALL
JP

CLRSC ;
HL,SIGON ;
PSTR ;
PNEWL ;
INIT ;
DELT ;
HL,QUESS ;
PSTR ;
GCHRA ;
PNEWL ;
NL ;
Z,QUES1 ;
'L' ;
Z,LEARN ;
'E' ;
Z,EDIT ;
'R' ;
Z,READ ;
'W ;
Z,WRITE ;
'C ;
Z,CHECK ;
'S' ;
Z,SETAM ;
'T' ;
Z,TOSTM ;
'G' ;
Z,GO ;
'D' ;
Z,DISP ;
'B' ;
Z,BOOT ;
'M' ;
Z,MANU ;
'F' ;
Z,FREARM ;
'Q' ;
Z,FINSH ;
HL,QMESS ;
PSTR ;
QUES1 ;

Clear the TRS80 Screen
Point to sign on message
Print it
Print a new line
Set up system
Small delay
Point to menu string
Print it
Get response and print it
Print new line
Is response a newline
Yes then ignore
Is response an 'L'
Yes do learn section
Is it an 'E'
Yes do edit
Is it an 'R'
Yes then do read command
Is it a 'W
Yes do write command
Is it a 'C
Yes do check routine
Is it an 'S'
Yes then do arm set
a 'T'
Yes then move arm to start
a 'G'
Do execute movements stored
a 'D'
Yes then display ARST array
a 'B'
Yes then restart system
an 'M'
Yes the Manual control of arm
a 'F'
Yes then clear all motors
a 'Q'
Yes then quit program
Point to 'PARDON' message
Print it
Try for next command

*4 -12'



THE LEARN ROUTINE

; This section deals with the recording
; of an arm sequence

LEARN

WAIT1

WAIT2

NOINT

STLRN

CONLN

LD
CALL
CALL
CALL
CP
JP
CP
JR
CP
JR

CALL
JR
CALL
CALL
LD
CALL
CALL
CALL
CP
JP
CP
JR
CALL
JR
LD
LD
OR
JR
XOR
LD
CALL
OR
JR
CALL
JP

HL,RELNS
PSTR
GCHRA
PNEWL
' . '
Z,QUES1
'S'
Z,WAIT1
'C
Z,NOINT

PNEWL
LEARN
MOVTO
INIT
HL,CASRD
PSTR
GCHRA
PNEWL
'.'
QUES1
SPAC
NZ,WAIT2
TORQUE
STLRN
HL,(COUNT)
A,L
H
Z,NOSTR
A
(MAN) A
KEYIN
A
NZ,CONLN
MOVTO
QUES1

; Point to learn message
; Print the message
; Get response and print it
; Print a new line
; Response a '.'
; Back to main loop is uder types a '.
; Response an 'S'
; Learn sequence from start
; a 'C
; Continue learning from end of
; sequence
; output a new line
; Bad answer so try again
; Move arm to start position
; Clear variables
; Point to waiting message
; Print it
; Get response and print it
; Print new line character
; Response a '.'
; Exit to main loop if so
; Is it a space?
; If not then bad input, try again
; Switch motors on
; Do rest of learn
; Get current count

; Is it zero?

; Yes then can't add to nothing
; Clear manual flag
; Because we are in learn mode
; Drive motors and store sequence
; Zero key pressed
; No then continue
; Move arm to start position
; Back to main loop

*4 - 13*



EDIT FUNCTION

EDIT

EDSRT

EDMOT

EDOK

LD HL,(COUNT) ; Get row count
LD A,L ;
OR H ; Test for zero
JP Z,NOSTR ; Yes then nothing in store
LD HL,ECOMS ; Print edit message
CALL PSTR ;
CALL GCHRA ; Get response
CALL PNEWL ; Print a new line
CP 'M' ; Is response an 'M'
JR Z,EDMOT ; Yes then edit motor
CP 'R' ; Is response an 'R'
JR NZ,EDSRT ; No then try again
LD HL,COUTS ; HL = New row count message
CALL PSTR ; Print it
CALL GINT ; Get 16 bit signed integer
JP NZ,BADC ; Non zero return means bad input
LD A,H ; Test top bit of HC
BIT 7,A ;
JP NZ,BADC ; If negative then bad input
LD BC,(COUNT) ; Get count value
PUSH HL ; Save response
OR A ; Clear carry flag
SBC HL,BC ; See if response < current count
POP HL ; Restore response
JR NC,BADC ;
LD (COUNT),HL ; Replace count with response
JP QUES1 ; Back to main loop
LD HL,EDSTR ;
CALL PSTR ; Print 'row number'
CALL GINT ; Get integer response
JR NZ,BADC ; Bad answer
LD A,H ;
BIT 7,A ; No negative row count
JR NZ,BADC ; allowed
LD A,H ;
OR L ; or zero row count
JR Z,BADC ;
LD BC,(COUNT) ; Get row count into BC
INC BC ; Move count up one
PUSH HL ; Clear carry flag
SBC HL,BC ; Subtract count from response
POP HL ; Restore response
JR NC,BADC ; If greater than allowed error
DEC HL ; Move response down one
ADD HL,HL ; Double HL
PUSH HL ; Save it
ADD HL,HL ; Row count x 4
POP BC ; BC = row count x 2

*4 - 14*



ADD HL,BC ; HL = Row count x 6
LD BC,ARST ; Get store start address
ADD HL,BC ; Add row offset
PUSH HL ; Save resulting pointer
LD HL,MOTNS ; Print
CALL PSTR ; Motor number string
CALL GINT ; Get Answer
JR NZ,BADNM ; Bad answer
LD A,H ;
OR A ;
JR NZ,BADNM ; Response too large
LD A,L ;
CP 1 ;
JR C,BADUM ; No motor number < 1
CP 7 ;
JR NC,BADNM ; No motor number > 6
POP HL ; Restore = Memory pointer
DEC A ; Motor offset 0 —> 5
LD C,A ;
LD B,0 ; Add to memory pointer
ADD HL,BC ; Now we point to motor in store
PUSH HL ; Save pointer
LD HL,NVALS ;
CALL PSTR ; Print new step value
CALL GINT ; Get response
JR NZ,BADNM ; Bad answer
LD A,H ;
CP 0FFH ;
JR NZ,PEDIT ; We have a positive response
BIT 7,L ; New negative step value too
JR Z,BADNM ; large
JR MOTAS ; Step value OK
OR A ; New positive step value too
JR NZ,BADNM ; large
BIT 7,L ; so exit
JR NZ,BADNM ; else ok
LD A,L ; Get step value
POP HL ; Restore memory pointer
LD (HL),A ; Place step value in store
JP QUES1 ; Go do next operation
POP HL ;
LD HL,BADMS ; Print error message and
CALL PSTR ;
JP QUES1 ; return to main loop

PEDIT

MOTAS

BADNM
BADC

*4 - 15*



READ ROUTINE

; Reads stored sequence from cassette
; into memory

READ

ROWNR

RDBYT

RDERR

LD HL,CASRD ; Point to wait message
CALL PSTR ; Print it
CALL GCHRA ; Get response
CALL PNEWL ; Print new line
CP '.' ; Is response a dot?
JP Z,QUES1 ; Yes then exit
CP SPAC ; Is it a space?
JR NZ,READ ; No then try again
XOR A ; Clear A=Drive zero
CALL CASON ; Switch on drive zero
CALL DELS ; Short delay
CALL RDHDR ; Read header from tape
CALL READC ; Read first character
LD B,A ; Put in B
CALL READC ; Read second character
LD C,A ; Place in C
OR B ; BC now equals count
JP Z,NOSTR ; Count zero, so exit
LD (COUNT),BC ; Set count = read count
LD HL,ARST ; Point to start of store
PUSH BC ; Same count
LD E,0 ; E = Check sum for a row
LD B,6 ; B = Column Count
CALL READC ; Read a row element
LD (HL),A ; Store it
ADD A,E ; Add it to check sum
LD E,A ; Store in check sum
INC HL ; Inc memory pointer
DJNZ RDBYT ; Do next element
POP BC ; Restore row count
CALL READC ; Read check digit
CP E ; Same as calculated?
JR NZ,RDERR ; No then error
DEC BC ; Decrement row count
LD A,B ; See if row count
OR C ; is zero
JR NZ,ROWNR ; No then read next row
CALL CASOF ; Switch cassette off
JP TAPEF ; exit
LD HL,RDMSG ; Error message for tape
CALL PSTR ; Print it
JP QUES1 ; Go to main loop

*4 - 16*



WRITE ROUTINE

; Writes a stored sequence to tape

WRITE

BADWI

ROWNW

WRBYT

LD BC,(COUNT) ; Get row count
LD A,B ;
OR C ;
JP Z,NOSTR ; If zero exit
LD HL,CASRD ; print message
CALL PSTR ;
CALL GCHRA ; Get answer
CALL PNEWL ; Print new line
CP '.' ; Is answer a dot
JP Z,QUES1 ; Yes then exit
CP SPAC ; Is answer a space
JR NZ,BADWI ; No then try again
XOR A ; Clear drive number
CALL CASON ; Switch on drive zero
CALL DELT ; delay
CALL WRLDR ; Write Leader
CALL DELT ; delay
LD BC,(COUNT) ; Get count into BC
LD A,B ;
CALL WRBYA ; Write higher byte
LD A,C ; Get lower byte of count into A
CALL DELT ; delay
CALL WRBYA ; Write lower byte
LD HL,ARST ; Point to start of sequence of store
PUSH BC ; Save row count
LD E,0 ; Clear check sum
LD B,6 ; Six motor slots per row
LD A,(HL) ; Get motor slot N
CALL DELS ; delay
CALL WRBYA ; Write it
CALL DELS ; delay
ADD A,E ; add to check sum
LD E,A ;
INC HL ; Inc memory pointer
DJNZ WRBYT ; Do for all six motors
CALL WRBYA ; Write check sum
POP BC ; Restore row count
DEC BC ; Decrement row count
LD A,B ;
OR C ; Test if zero
JR NZ,ROWNW ; No then try again
CALL CASOF ; Switch cassette off
JP QUES1 ; Back to main loop

*4 - 17*



CHECK ROUTINE

; Checks tape with sequence in store

CHECK

BADCI

ROWNC

CKBYT

TAPEF

LD BC,(COUNT) ; Get row count
LD A,B ;
OR C ;
JP Z,NOSTR ; If zero exit
LD HL,CASRD ; Print wait message
CALL PSTR ;
CALL GCHRA ; Get answer
CALL PNEWL ; Print new line
CP '.' ; is response a '.'
JP Z,QUES1 ; Yes then go to main loop
CP SPAC ; Is it a space
JR NZ,BADCI ; No then try again
XOR A ; Clear cassette number
CALL CASON ; Switch drive zero on
CALL RDHDR ; Read header from tape
LD BC,(COUNT) ; Get row count
CALL READC ; Read first section
CP B ; Same?
JR NZ,RDERR ; No then error
CALL READC ; Read lower byte of count
CP C ; Same?
JR NZ,RDERR ; No then error
OR B ; Zero count from tape
JP Z,NOSTR ; So exit
LD HL,ARST ; Point to start of memory
PUSH BC ; Save count
LD E,0 ; Check sum is zero
LD B,6 ; Count is 6
CALL READC ; Read a motor step element
CP (HL) ; Same as in store?
JP NZ,RDERR ; Not the same so error
ADD A,E ;
LD E,A ; Add to check sum
INC HL ; Advance memory pointer
DJNZ CKBYT ; Do next row element
POP BC ; Restore row count
CALL READC ; Read check sum
CP E ; Same as check sum calculated
JP NZ,RDERR ; No then error
DEC BC ; Decrement count
LD A,B ;
OR C ; Is count zero?
JP NZ,ROWNC ; No then do next row
CALL CASOF ; Switch cassette off
LD HL,TAPOK ; Print tape off message
CALL PSTR ;
JP QUES1 ; and back to main loop

*4 - 18*



BOOT AND FINISH COMMANDS

; This routine restarts the program

BOOT

; This is the exit from program Section to TRS8O
; system level

FINSH

TRYNO

LD HL,RELYQ ; Print "REALLY QUIT"
CALL PSTR ;
CALL GCHRA ; Get answer
CP 'Y' ; User typed a 'Y'
JR NZ,TRYNO ; No then try 'N'
LD HL,SIGOF ; Print ending message
CALL PSTR ; and then
JF FINAD ; return to TRS8O System
CP 'N' ; User typed an 'N'
JR NZ,FINSH ; No then try again
CALL PNEWL ; Print a new line
JP QUES1 ; Back to main loop

-19

LD HL,BOOTS ; Print "DO YOU REALLY
CALL PSTR ; WANT TO RESTART?"
CALL GCHRA ; Get answer
CP 'Y' ; user typed 'Y'?
JP Z,STARM ; Yes then restart program
CP 'N' ; No 'N'?
JR NZ,BOOT ; Then try again
CALL PNEWL ; else print new line and
JP QUES1 ; back to main loop



OTHER SHORT COMMANDS

; SETAM clears arm position array

SETAM CALL RESET ; Clear Arm array (POSAR)
JP QUES1 ; Back to main loop

; TOSTM moves the arm back to its start position

TCSTM CALL MOVTO ; Steps motors till POSAR elements
JP QUES1 ; are zero then back to main loop

; FREARM frees all motors for user to move arm
; by hand

FREARM CALL CLRMT ; Output all ones to motors
JP QUES1 ; and now to main loop

; MANU allows the user to move the arm using
; the 1-6 keys and the 'Q' 'W 'E' 'R' 'T' 'Y' keys
; The movements made are not stored.

MANU LD A,l ; Set in manual mode for the
LD (MAN),A ; keyin routine

MANUA CALL KEYIN ; Now get keys and move motors
JP NZ,MANUA; If non zero then move to be done
XOR A ; Clear manual flag
LD (MAN),A ;
JP QUES1 ; Back to main loop

*4 - 20*



THE GO COMMAND

; This command causes the computer to step
; through a stored sequence and makes the arm
; follow the steps stored, if the sequence is to
; be done forever then the arm resets itself at
; the end of each cycle.

GO CALL PNEWL ; Print a new lire
CALL MOVTO ; Move arm to start.
XOR A ; Clear
LD (FORFG),A ; Forever Flag FORFG
LD HL,AORNM ; Print "DO ONCE OR FOREVER
CALL PSTR ; Message
CALL GCHRA ; Get answer and print it
CALL PNEWL ; Print a new line
CP '0' ; User typed an '0'
JR Z,ONECY ; Do sequence till end
CP 'F' ; User typed an 'F'
JR NZ,GO ; No then re-try
LD A,l ; Set forever flag
LD (F0RFG),A ; to 1

ONECY LD A,'.' ; Print a '.'
CALL PUTCHR ; Using PUTCHR
CALL DOALL ; Execute the sequence
LD A,(FORFC) ; Test FORFG, if zero
OR A ; then we do not want
JP Z,NORET ; to carry on so exit
CALL DELT ; delay
CALL MOVTO ; Move arm to start
CALL DELLN ; Delay approx 1 second
JR ONECY ; Do next sequence

NORET LD HL,D0NMS ; Print sequence done
CALL PSTR ;
JP QUESl ; and go to main loop

*4 - 21*



THE DISPLAY COMMAND

; This command allows the user to display
; the motor sequence so that he can then
; alter the contents of a sequence by using
; the Edit command

DISP LD HL,DISPS ; Point to header string
CALL PSTR ; and display it
CALL POSDS ; Print out the relative position
LD HL,ARST ; Point to sequence start
LD BC, (COUNT) ; BC = how many rows to print
LD A,B ;
CR C ; Test if count is zero
JP NZ,SETBC ; No then jump to rest of

NOSTR LD HL,NODIS ; display else print message
CALL PSTR ; telling user no display and
JP QUESl ; return to the main loop

SETBC LD EC,000 ; Clear BC for row count
DOROW PUSH BC ; Save it

PUSH HL ; Save memory position
LD H,B ;
LD L,C ; HL = row count
INC HL ; Now row count =N+1
LC 1X,NUMAR ; 1X points to buffer fcr ASCII String
CALL CBTAS ; Convert HL to ASCII
LD HL,NUMAR ; Point to ASCII string
CALL PSTR ; now print it
LD A,'.' :
CALL PUTCHR ; Print a '.'
POP HL ; Restore memory pointer
LD B,6 ; Motor count to B (6 motors)

NEXTE LD A,(HL) ; Get step value
PUSH HL ; Save memory pointer
PUSH BC ; Save motor count
BIT 7,A ; Test bit 7 of A for sign
JP Z,NUMPO ; If bit = 0 then positive step
LD H,0FFH ; Make B = negative number
JR EVAL ; Do rest

NUMPO LD H,0 ; Clear H for positive number
EVAL LD L,A ; Get low order byte into L

LD 1X,NUMAR ; Point to result string
CALL CBTAS ; Call conversion routine
LD PL,NUMAR ; HL points to result
CALL PSTR ; Print resulting conversion
LD A,(3810H) ; Get keyboard memory location
BIT 0,A ; Test for zero key pressed
JR Z,NOSTP ; Not pressed, then skip

DOSTF CALL GCER ; Wait till next character entered
CP '.' ; Is it a dot?
JR NZ,NOSTP ; No then carry on
CALL PNEWI. ; else print a new line
POP BC ; and restore all the registers
POP HL ; and the stack level

*4 - 22*



POP BC ;
JP QUES1 ; Jump back to main loop
POP BC ; Restore column count
POP HL ; Restore memory pointer
INC HL ; Increment memory pointer
CALL PSPAC ; Print a space between

; numbers
DJNZ NEXTE ; Do for six motors
CALL PNEWL ; Print a new line
POP BC ; Restore row count
INC BC ; Increment row count
LD A,(COUNT) ; Get lower count byte
CP C * ; Is it the same
JR NZ,DOROW ; No then do next row
LD A,(COUNT+1) ; Get higher order count byte
CP B ; Same?
JR NZ,DOROW ; No then do next row else
CALL PNEWL ; print a new line and then
JP QUES1 ; back to main loop

*4 - 23*

NOSTP



4-23b



SUBROUTINES INDEX

DOALL Execute a stored sequence once

DRIVL Drives all motors directed by TBUF

INIT Set up system

MOVTC. Use POSAR to rest system arm

TORQUE Turn on off motors

CLRMT Turn off all motors

SETDT Reset CTPOS elements to one

DRAMT Drive directed motors

STEPM Step motors via DRAMT

DNEWD Delay on direction change

SRAMT...................Update TBUF array during learn

KEYIN Scan keyboard and build up motors to move

CBTAS.................. Convert 16 bit 2's complement number to ASCII

CLRMF Clear MOTBF array

CTBUF Clear TBUF, DRBUF & MOTBF arrays

GINT Get 16 bit signed value from keyboard

POSDS Display relative position array elements

POSIC.................. Increment relative position array elements

STORE Copy TBUF to current ARST slice

RESET Clear POSAR array

PUTCHR Print a character

PSTR Print a string

PSPAC Print a space

PNEWL Print a carriage return

*4 - 24*



SUBROUTINES INDEX (continued)

SCKBD Scan the keyboard

GCHRA Get a character and print it

CLRSC Clear the Screen

DELSW Delay on value in B

DELS Delay approx 0.001 sec

DELT Delay approx 0.01 sec

DELLN......................Delay approx 1.0 sec

*4 - 25*



SUBROUTINE DOALL

; This subroutine executes a sequence in store once.
; Forever flag FORFG is cleared if user types a '.'

DOALL LD BC,(COUNT) ; Get sequence row count
LD A,B ;
OR C ; If count zero then
JR Z,RET2 ; exit
LD HL,ARST ; HL points to memory start

NMOTS LD DE,TBUF ; DE points to temporary buffer
PUSH BC ; Save count
LD BC,0006 ; Motor count of six
LDIR ; Copy memory slice into TBUF
PUSH HL ; Save new memory pointer
CALL DRIVL ; Drive all motors fcr this slice
CALL SCKBD ; See if keyboard input
POP HL ; Restore memory pointer
POP BC ; Restore row count
CALL DNEWD ;
CP '.' ; User typed a '.'
JR NZ,CARON ; No then continue

RET2 XOR A ; Clear A
LD (FORFG),A ; Clear flag to halt routine above
RET ; exit

CARON DEC BC ; Decrement count
LD A,B ;
OR C ; Test for zero
JR NZ,NMOTS ; No then carry on else
RET ; return

*4 - 26*



SUBROUTINE DRIVL

; This routine is given TBUF, it then drives all
; the motors that need to be driven, till TBUF = 0

DRIVL LD C,0 ;
SCANW LD B,6 ; Set BC = motor count

LD HL,TBUF ; Point to TBUF
TBZER LD A,(HL) ; Get step value from TBUF

OR A ; Is it zero?
JR NZ,TBNZR ; No then continue
INC HL ; Point to next TBUF location
DJNZ TBZER ; Do next motor check
RET ; If no motor to step, then return

TBNZR LD DE,MOTBF + 5 ; DE points to last direction array
LD HL,TBUF + 5 ; HL points to TBUF
LD B,6 ; B = motor count

DOAGN LD A,(HL) ; Get motor step value
CP 0 ; Is it zero?
JR Z,NOEL ; Yes then skip
JP M,SNEG ; Is it negative ie, reverse

SPOS LD A,3 ; No positive, so load MOTBF (N)
LD (DE),A ; With 3
DEC (HL) ; Decrement motor count in TBUF
JR NOFIL ; Complete the MOTBF array

SNEG LD A,l ; Set MOTBF = 1 for
LD (DE),A ; a positive drive
INC (BL) ; Decrement negative count
JR NOFIL ; Do rest of MOTBF

NOEL XOR A ; Clear MOTBF (N)
LD (DE),A ;

NOFIL DEC DE ; Move to next MOTBF element
DEC HL ; Move to next TBUF element
DJNZ DOAGN ; Do for all six motors
LD A,l ;
LD (KEYP),A ; Set key pressed flag
CALL STEPM ; Step all motors once if
DEC C ; any to step
JF NZ,SCANW ; Do for maximum of 128 cycles
RET ; then return

*4 - 27*



SUBROUTINE INIT

; INIT clears the row count (COUNT), resets the
; MAN flag, clears the TBUF, DRBUF, & MOTBF arrays
; The CUROW pointer is reset to the start of the ARST,
; position array is cleared.

INIT LD HL,0 ; Set HL = 0
LD (COUNT),HL ; and clear the row count
XOR A ; Clear A
LD (MAN),A ; Now clear MAN
LD HL,ARST ; HL = start of arm store
LD (CURCW),HL ; CUROW = start of arm store
CALL CTBUF ; Clear TBUF, DRBUF & MOTBF
CALL RESET ; Clear the POSAR array
CALL CLRMT ; Free all motors
RET ; EXIT

*4 - 28*



SUBROUTINE MOVTO

; This routine takes the POSAR array and uses it to drive
; all the motors until the ARM is in its defined start position

MOVTO PUSH AF ; *
PUSH BC ; *
PUSH DE ; * Save registers
PUSH HL ; *

RES1 ID HL,POSAR ; HL points to POSAR
LD B,12 ; B = count of 12

NRES1 LD A,(HL) ; Get POSAR element
CR A ; Is it zero?
JR NZ,MTSA ; No then continue
INC HL ; Point to next POSAR element
DJNZ NRES1 ; See if all zero
JR ENDSC ; All zero so end:

MTSA LD HL,POSAR+10 ; HL points to POSAR
LP DE,MOTBF+ 5 ; DE points to MOTBF
LE B,6 ; B = count

RSCAN PUSH BC ; Save count
LD C,(HL) ; Get lower byte
INC HL ; Advance HL pointer
LD B,(HL) ; Get high byte of POSAR element
LD A,C ; Get low byte into A
OR B ; See if POSAR(N) is zero
JP NZ,DOMPL ; no skip
LD (DE),A ; Zero MOTBF (N)
DEC HL ; advance POSAR pointer
JR NMDR ; Do next motor

DOMPL LD A,B ; See direction to move in
BIT 7,A ;
JR Z,RMOT1 ; Go in reverse
INC BC ; Go forward
LD A,l ; A = forward
JR DOIT1 ; Do rest

RMOT1 DEC BC ; Dec count for reverse
LD A,3 ; Set reverse in A

DOIT1 LD (DE),A ; Store reverse in MOTBF (N)
LD (HL),B ; Store updated POSAR count
DEC HL ; in POSAR (N)
LD (HL),C ; Store lower byte

NMDR DEC HL ;
DEC HL ; point to next POSAR element
DEC DE ; Move to next MOTBF element
POP BC ; Restore motor count
DJNZ RSCAN ; Do for next motor
CALL DRAMT ; Drive all motors to be driven
JR RES1 ; Do till all POSAR slots zero

ENDSC POP HL ; *
POP DE ; *
POP BC ; * Restore all registers
POP AF ; *
RET ; Return

*4 - 28a*



SUBROUTINES TORQUE, CLRMT AND SETDT

; TORQUE switches of motors on and sets CTPOS(N)'s
; CLRMT turns all motors off and sets CTPOS(1-6)
; SETDT sets all CTPOS elements to start offset
; position which equals 1.

TORQUE PUSH AF ; * Set clear motor-
PUSH BC ; *
PUSH DE ; * Save Registers
PUSH HL ; *
LD HL,TORMS ; Print TORQUE ON message
CALL PSTR ;
LD DE,CTPOS ; Point to FTABL offset array
LD HL,MOTBF ; Point to last drive table
LD B,6 ; B = motor count

TORQ1 LD A,(HL) ; Get motor value
OR A ; Is it zero?
JR NZ,TORQ2 ; No then skip
LD A,l ; Reset CTPOS(N) to position 1
LD (DE),A ; in FTABL
LD A,B ; Get motor address in A
SLA A ; Shift it left for interface defn
OR 192 ; or in FTABL pulse
OUT (PORT),A ; Output it to selected motor

TORQ2 INC DE ; Advance points to next
INC HL ; motors
DJNZ TORQ1 ; Do next motor
JR TOQCL ; Exit with register restoration

CLRMT PUSH AF ; * clear all motors torque
PUSH BC ; *
PUSH DE ; * Save Registers
PUSH HL ; *
LD HL,NOTOR ; Print "NO TORQUE" message
CALL PSTR ;
LD D,0F0H ; Pattern for motors off

OTMT LD B,6 ; B = Motor count
CLNT LD A,B ; Get motor address in A

SLA A ; Shift into correct bit position
OR D ; Combine with coils off pattern
OUT (PORT),A ; Output to selected motor
DJNZ CLMT ; Do next motor
CALL SETDT ; Clear CTPOS array to value of 1

TOQCL POP HL ; *
POP DE ; *
POP BC ; * Restore Registers
POP AF ; *
RET ; Done, exit

.

*4 - 29*



SETDT PUSH BC ; * Set CTPOS elements to start
PUSH DE ; * Save used registers
PUSH HL ; *
LD B,6 ; Motor count to B
LD HL,CTPOS ; HL points to CTPOS array

NSET1 LD (HL),1 ; Set CTPOS(N) to start position = 1
INC HL ; Increment HL
DJNZ NSET1 ; Do set up next CTPOS element
POP HL ; *
POP DE ; * Restore used registers
POP BC ; *
RET ;

*4 - 30*



SUBROUTINE DRAMT

; DRAMT drives all six motors directly and uses
; FTABL to output the correct pulse patterns.
; For half stepping the pattern must be changed in FTABL
; and the bounds in DRAMT

DRAMT PUSH AF ; *
PUSH BC ; *
PUSH DE ; * Save Registers
PUSH HL ; *
LD B,6 . ; B = motor count
LD DE,MOTBF +5 ; Point to MOTBF array
LD HL,CTPOS ; HL points to FTABL offset array

NMTDT LD A,(DE) ; Get MOTBF(N)
OR A ; Is it zero?
JR Z,IGMTN ; If zero; then skip
BIT 1,A ; Test direction
CALL OUTAM ; Step motor
JR Z,REVMT ; If direction negative then jump
INC A ; Increment table counter
CP 5 ; Upper bound?
JR C,NORST ; No then continue
LD A,l ; Reset table offset

NORST LD (HL),A ; Store in CTPOS (N)
IGMTN INC HL ; Increment CTPOS pointer

DEC DB ; Decrement MOTBF pointer
DJNZ NMTDT ; Do for next motor
CALL DELT ; Delay after all pulses out
CALL DELS ; *
POP HL ; *
POP DE ; '
POP BC ; * Restore Registers
POP AF ; *
RET ; Exit

REVMT DEC A ; Move table pointer on
CP 1 ; Compare with lower bound
JR NC,NORST ; If no overflow then continue
LD A,4 ; Reset table offset
JR NORST ; Do next motor

OUTAM LD A,(HL) ; Get table offset 1-4
PUSH AF ; *
PUSH DE ; * Save Registers
PUSH HL ; *
LD HL,FTABL-1 ; Get table start
LD D,0 ;
LD E,A ; DE now equals 1-4
ADD HL,DE ; Add to FTABL -1 to get address
LD A,(HL) ; Get motor pulse pattern
LD C,B ; Get address field in C and
SLA C ; shift it one to the left
OR C ; or in the pulse pattern
OUT (PORT),A ; Output to interface circuitry
POP HL ; *
POP DE ; * Restore Registers
POP AF ; *
RET ; Return

*4 - 31*



SUBROUTINE STEPM

; This routine causes all motors that should be
; stepped to be so, and updates the motors relative
; positions from their start positions.

STEPM PUSH AF ; *
PUSH HL ; * Save Register
PUSH BC ; *
LD HL,MOTBF ; HL points to motor buffer
LD B,6 ; B = Count

TRY0 LD A,(HL) ; Get motor value 3 or 1
OR A ; Zero?
JR NZ,CONTA ; No then continue

CONT INC HL ; Point to next motor
DJNZ TRY0 ; Do next motor
POP BC ; *
POP HL ; * Restore Registers
POP AF ; *
RET ; Exit

CONTA POP BC ; *
POP HL ; * Restore registers
CALL DRAMT ; Drive motors
CALL POSIC ; Increment relative position
POP AF ; * Restore AF
RET ; Exit

*4 - 32*



SUBROUTINE DNEWD
; This subroutine checks to see if any motors are
; changing direction , if so a delay is inserted
; into the sequence.

DNEWD PUSH AF ; *
PUSH BC ; *
PUSH DE ; * save used registers
PUSH HL ; *
LD BC,6 ; Load BC with count
OR A ; Clear carry
SBC HL,BC ; HC points to previous motor slice
LD D,H ;
LD E,L ; Move HL to DE
POP HL ; Restore current row pointer
PUSH HL ; Save again
LD B,C ;

NCOMP LD A,(HL) ; Get contents of this row
CP 0 ; See if positive or negative
LD A,(DE) ; Get identical previous motor slot
JP P,PDIR ; if positive do for positive motor

NDIR CP 0 ; Compare if both in same
JP M,NXTCK ; direction then skip else

CDDEL CALL DELLN ; delay and
NCDSG POP HL ; *

POP DE ; *
POP BC ; * Restore registers
POP AF ; *
RET ; Now return

PDIR CP 0 ; If previous motor is negative
JP P,NXTCK ; then delay, else do for next
JR CDDEL ; motor slot

NXTCK INC HL ; increment current row pointer
INC DE ; increment lost row pointer
DJNZ NCOMP ; do for next motor
JR NCDSG ; Return with no large (1 sec) delay

*4 - 33*



SUBROUTINE SRAMT

; SRAMT is responsible for updating the TBUF
; elements and for setting the STRFG if a situation
; exists where the TBUF array should be stored in the
; current ARST slot. This will occur if any motor changes
; direction or a motor exceeds the allowed slot
; boundary of -128 to 127.

SRAMT LD A,(MAN) ; Get manual flag
OR A ; Is it zero?
JP NZ,STEPM ; Yes then just step motors
LD (STRFG),A ; Clear the store flag
LD B,6 ; B = motor count
LD lX,DRBUF+6 ; 1X = previous direction buffer
LD lY,MOTBF+6 ; 1Y = current buffer
LD HL,TBUF +6 ; HL = step buffer

NTMOT DEC 1Y ;
DEC 1X ;
DEC HL ; move pointers
LD A,(1Y +0) ; Get current motor direction
OR A ; No work to do
JR Z,NODRV ; skip, if so
CP 1 ; Reverse
JR Z,REVDR ; Yes then skip

FORDR LD A,(lX+0) ; Get previous direction
CP 1 ; Direction change?
JR NZ,CFORD ; No then advance TBUF(N) step
CALL SETST ; Set the store flag
LD (1Y+0) ,0 ; Clear MOTBF element.
JR NODRV ; Do next motor

CFORD INC (HL) ; Increment motor step in TBUF
LD A,(HL) ; Get new value
CP 127 ; Check against upper board
CALL SETST ; Limit reached then store flag
LD (lX+0),3 ; Set previous direction

NODRV DJNZ NTMOT ; Do next motor
CALL STEPM ; Step motors to be driven
LD A,(STRFG) ; Examine store flag
OR A ; Zero?
JP NZ,STORE ; No then do store operation
RET ; Exit

REVDR LD A,(lX+0) ; Get previous direction
CP 3 ; Direction reversed?
JR NZ,CREV1 ; No then continue
CALL SETST ; Else set store TBUF in ARST flag
LD (lY+0),0 ; clear MOTBF element
JR NODRV ; Do next motor

CREV1 DEC (HL) ; Advance step count in TBUF (N)
LD A,(HL) ; Get element
CP -128 ; Compare with upper negative bound
CALL Z,SETST ; Limit reached so set store flag

CREVD LD (1X+0),1 ; Set Direction
JR NODRV ; Do next motor

SETST PUSH AF ; Save AF
LD A,l ; Set store flag STRFG

SETSC LD (STRFG),A ; to one
POP AF ; Restore AF
RET ; Continue

*4 - 34*



SUBROUTINE KEYIN

; This routine scans the keyboard checking for
; the keys '1-6' and 'Q''W'E''R''T''Y' and 'S'
; and 0. It then drives the motors corresponding
; to the keys pressed. If in learn mode the
; sequence is stared.

KEYIN CALL CLRMF ; Clear MOTBF array
LD A,(3840H) ; Get TRS80 keyboard byte
BIT 7,A ; See if
JR Z,IGDEL ; No space key so skip
CALL DELT ; *
CALL DELT ; * Slow motor driving

IGDEL XOR A ; Clear KEY PRESSED flag
LD (KEYP),A ;
LD A,(3810H) ;
BIT 0,A ; Is the zero key pressed?
JR Z,TRYS ; No then skip
JP NOTNG ; Go to do nothing

TRYS LD A,(3804H) ; See if
BIT 3,A ; 'S' key pressed
LD A,(3810H) ; Restore memory value
JR Z,TRYN1 ; No then skip
LD A,(MAN) ; See if in manual mode
CR A ;
CALL Z,STORE ; No then store TBUF
OR 1 ; Set not finished flag
RET ; and exit to caller

TRYN1 LD BC,0 ; Clear MOTBF offset in BC
BIT 1,A ; See if '1' key is pressed
JP Z,TRYN2 ; No then skip else
CALL FORMT ; Set up motor 1 position in MOTBF

TRYN2 INC BC ; Increment MOTBF offset
BIT 2,A ; See if '2' key pressed
JP Z,TRYN3 ; No skip
CALL FORMT ; Set second motor forward

TRYN3 INC BC ; Advance offset
BIT 3,A ;
JP Z,TRYN4 ; See if '3' key pressed, No skip
CALL FORMT ; Set forward direction on Motor 3

TRYN4 INC BC ; Increment offset in BC
BIT 4,A ; See if key '4' is pressed
JP Z,TRYN5 ; No then test key '5'
CALL FORMT ; Do forward direction for Motor 4

TRYN5 INC BC ; Advance offset
BIT 5,A ; Key '5' pressed
JP Z.TRYN6 ; No skip
CALL FORMT ; Do set up for motor 5

TRYN6 INC BC ; Advance offset
BIT 6,A ; Key '6' pressed
JP Z,TRYQT ; No then try 'Q'
CALL FORMT ; Do for motor 6

*4 - 35*



TRYQT LD BC,0 ; Clear BC offset for motor 1
LD . A,(3804H) ; See if 'Q' key pressed

TRYQ BIT 1,A ;
JP Z,TRYW ; No then skip
CALL BACMT ; Set motor 1 for backward

TRYW INC BC ; Advance pointer
BIT 7,A ; See if 'W key pressed
JP Z,TYRE ; No skip
CALL BACMT ; Do backward for motor 2

TRYE INC BC ; Advance pointer offset
LD A,(3801H) ; See if
BIT 5,A ; 'E' key pressed
JR Z,TRYR ; No skip
CALL BACMT ; Set motor 3 for backward

TRYR INC BC ; Advance pointer offset
LD A,(3804H) ; See if
BIT 2,A ; Key 'R' is pressed
JP TRYT ; No skip
CALL BACMT ; Set motor 4 backward

TRYT INC BC ; Advance offset
BIT 4,A ; Is key 'T' pressed?
JP Z,TRYY ; No skip
CALL BACMT ; Set motor 5 backward

TRYY LD A,(3808H) ; Is the 'Y' key pressed?
INC BC ; Advance offset
BIT 1,A ; No key
JP Z,SOMEN ; 'Y' then skip
CALL BACMT ; Set motor 6 for backward

SOMEN CALL SRAMT ; Step motors, maybe store.
OR 1 ; Set zero key not pressed flag
RET ; Return to caller

NOTNG LD A,(MAN) ; Zero was pressed so see
OR A ; if in learn mode
CALL Z,STORE ; Yes then store
XOR A ; Set zero flag and
RET ; Return to caller

FORMT LD E,3 ; Set for forward direction
JP SETMT ; Do set motor slot in MOTBF

BACMT LD E,l ; Set for reverse direction
SETMT LD HL,MOTBF ; Point to MOTBF

ADD HL,BC ; Add in motor offset
PUSH AF ; Save AF
LD A,(HL) ; Get byte
OR A ; See if zero
JR Z,DOMOT ; Yes then set byte
XOR A ; Clear
LD (HL),A ; byte in MOTBF user wants both
POP AF ; directions clear byte
RET ; Restore AF and return

DOMOT LD (HL),E ; Set byte in MOTBF
LD A,l ; and set
LD (KEYP),A ; key pressed flag
POP AF ; Restore AF
RET ; exit from routine

*4 - 36*



SUBROUTINE CBTAS

; This subroutine makes a signed binary value in
; HL into arm ASCII String and stores the string
; in the locations pointed to by 1X

CBTAS PUSH AF ; *
PUSH HL ; *
PUSH DE ; * Save Registers
PUSH 1X ; *
BIT 7,H ; Test sign of number
JR Z,POSNO ; If zero then positive number
LD A,H ;
CPL ; Complement number if negative
LD H,A ;
LD A,L ;
CPL ;
LD L,A ;
INC HL ; Now 2's complement negative
LD A,MINUS ; Place minus sign in string

PUTSN LD (1X+0),A ; Pointed to by 1X
INC 1X ; Advance 1X pointer
JR CONUM ; Do rest of conversion

POSNO LD A,SPAC ; Place a space if number positive
JR PUTSN ; Jump to copy space to memory

CONUM PUSH 1Y ; Save 1Y register
LD 1Y,BTOAT ; Point to subtraction table

NUMLP LD A,NUMBA ; Get ASCII 0 in A
LD E,(1Y+0) ;
LD D,(1Y+1) ; Get table value

SUBBA OR A ; Clear carry bit
SBC HL,DE ; Subtract table value from value

; input
JP C,GONEN ; If carry then do for next digit
INC A ; Inc count (ASCII in A)
JR SUBBA ; Do next subtraction

GONEN ADD HL,DE ; Restore value before last
; subtraction

LD (1X+0),A ; Store ASCII Number in memory
INC 1X ; Inc memory pointer
INC 1Y ; Point to next table value
INC 1Y ;
DEC E ; Test if E = 0
JR NZ,NUMLP ; No then try for next digit
XOR A ; Clear A and place in store
LD (1X+0),A ; as EOS = End of string
POP 1Y ; *
POP 1X ; *
POP DE ; * Restore all saved registers
POP HL ; * and
POP AF ; *
RET ; Exit

*4 - 37*



BTOAT DEFW 10000 ; Table of subtraction constants
DEFW 1000 ; for conversion routine
DEFW 100 ;
DEFW 10
DEFW 1

*4 - 38*



CLEARING AND RESETTING ROUTINES

; CLRMF clears the MOTBF array

CLRMF PUSH BC ; *

PUSH DE ; * Save Registers used
POP HL ; *
LD HL,MOTBF ; Point to MOTBF(0)
LD DE,MOTBF +1 ; Point to MOTBF(1)
LD BC,5 ; BC = Count
LD (HL),0 ; MOTBF (0) = 0
LDIR ; Copy through complete array
POP HL ; *
POP DE ; * Restore Registers used
POP BC ; *
RET ; Exit

; CTBUF clears TBUF, DRBUF and MOTBF
; Note all must be in order

CTBUF PUSH BC ; *
PUSH DE ; * Save Registers
PUSH HL ; *
LD HL,TBUF ; HL points to TBUF(0)
LD DE,TBUF + 1 ; DE points to TBUF(l)
LD BC,17 ; BC = Count of 17
LD (HL),0 ; Clear first element
LDIR ; Now clear next 17 elements
POP HL ; *
POP DE ; * Restore Registers
POF BC ; *
RET ; Exit

*4 - 39*



SUBROUTINE GINT

; This subroutine gets a signed 16 bit integer
; from the TRS80 Keyboard.
; If a bad number is typed it returns with the
; Status flag - non zero.
; The 2's complement number is returned in HL

GINT PUSH BC ; *
PUSH DE ; * Save Registers
XOR A ; Clear A and carry
SBC HL,HL ; Zero HL
LD B,5 ; Maximum of 5 characters
LD (MIN),A ; Clear MIN=Minus Flag

GINT1 CALL GCHRA ; Get a character and display it
CP SPAC ; Is it a space?
JR Z,GINT1 ; Yes then skip
CP NL ; Is it a newline?
JP Z,PRET1 ; Done if new line, return zero
CP MINUS ; A minus number ?
JR NZ,POSON ; No then see if positive
LD A,l ; Set minus flag
LD (MIN),A ;
JR GINT2 ; Get rest of number

PCSON CP '+' ; Is number a positive number
JR NZ,NUM1 ; See if numeric

GINT2 CALL GCHRA ; Get next character
NUM1 CP NL ; Newline?

JR Z,NUMET ; Yes then exit
ADD HL,HL ; Double number
PUSH HL ; Save X 2
ADD HL,HL ; X 4
ADD HL,HL ; X 8
POP DE ; Restore X 2
ADD HL,DE ; Now add to get X 10
CP 0 ;
JR C,ERRN2 ; If number less than ASCII 0 ERR
CP '9' + 1 ; If number greater than ASCII
JR NC,ERRN2 ; 9 then error
SUB NUMBA ; Number input OK, so make into
LD E,A ; Binary and
LD D,0 ; load into DE
ADD HL,DE ; Now add to total
DJNZ GINT2 ; Do for next digit
CALL PNEWL ; Print a new line

NUMET LD A,(MIN) ; Is number negative?
OR A ;
JR Z,PRET1 ; No then finish off
LD A,L ; else complement
CPL ; The value in HL

. LD L,A ;
LD A,H ; (2's Complement)

*4 - 40*



CPL ;
LD H,A ;
INC HL ;

PRET1 XOR A ; Clear A and flags
POP DE ; * Restore Registers
POP BC ; *
RET ; and return

ERRN2 CALL PNEWL ; Print a newline
LD A,l ; Set A to 1
OR A ; Clear carry flag
SBC HL,HL ; Clear HL
OR A ; Clear carry flag
JR PRET2 ; Return with ERROR CODE

*4 - 41*



SUBROUTINE POSDS

; This routine displays the POSAR array for the
; user to see how far the arm is from its
; "Home position"

POSDS PUSH AF ; *
PUSH BC ; *
PUSH DE ; * Save all registers
PUSH HL ; *
LD HL,POSST ; Print "RELPOS="
CALL PSTR ; String
LD B,6 ; Motor count into B
LD DE,POSAR ; Point to array containing offsets

NPOSA LD A,(DE) ; Get lower order byte into
LD L,A ; L
INC DE ; Increment memory pointer
LD A,(DE) ; Get higher order byte into
LD H,A ; H
INC DE ; Increment to next number
LD 1X,NUMAR ; 1X points to result string
CALL CBTAS ; Convert HL and leave in (1X)
LD HL, NUMAR ; Point to result string
CALL PSTR ; Print it
CALL PSPAC ; Print a space
DJNZ NPOSA ; Do for next motor
CALL PNEWL ; Print a new line, all done
FOP HL ; *
POP DE ; *
POP BC ; * Restore all Registers
POP AF ; *
RET ; Now return

*4 - 42*



SUBROUTINE POSIC

; POSIC increments the signed 2's complement 16 bit
; motor step offset counts. It does not check for overflow,
; But this is very unlikely. The base would need to
; be rotated about 30 times to cause such an event.

POSIC PUSH AF ;
PUSH BC ; *
PUSH DE ; * Save registers
PUSH HL ;
LD B,6 ; B = motor count
LD DE,MOTBF+5 ; Point to MOTBF
LD HL,POSAR+l0; Point to POSAR (relative position)

NPOS1 PUSH BC ; Save motor count
LD C,(HL) ; Get lower POSAR byte in C
INC HL ; Point to Higher byte
LD B,(HL) ; Get higher byte in B
LD A,(DE) ; Get direction byte frcm MOTBF
AND 3 ; Clear all higher bits from D7-D3
OR A ; Is it zero?
JR NZ,NONZM ; No skip
DEC HL ; Yes then move POSAR pointer back
JR NPOS2 ; and continue with next motor

NONZM BIT 1,A ; Test direction bit
JR NZ,RDPOS ; Do for reverse direction
INC BC ; Advance element
JR STPCS ; Restore 16 bit POSAR element

RDPOS DEC BC ; Advance negative POSAR element
STPOS LD (HL),B ; Store higher byte

DEC HL ; Move pointer to lower byte
LD (HL),C ; Store lower byte

NPOS2 DEC HL ; Back up POSAR pointer to
DEC HL ; next motor position slot
DEC DE ; Backup MOTBF pointer to next slot
POP BC ; Restore Motor count
DJNZ NPOS1 ; Do next motor
POP HL ;
POP DE ; * Restore used Registers
POP BC ;
POP AF ;
RET ; Done, Exit

*4 - 43*



SUBROUTINE STORE

; STORE copies the TBUF array into the locations pointed to
; by CUROW. If the TBUF array is completely empty then the
; copy is not done. The COUNT and the CUROW variables
; are both updated, and a check is made to ensure that
; a store overflow is caught and the user told.

STORE PUSH BC ; *
PUSH HL ; * Save registers
LD HL,TBUF ; Point to TBUF
LD B,6 ; B = motor count

STEST LD A,(HL) ; Get TBUF (N)
OR A ; Is TBUF element zero
JR NZ,STOR1 ; No then do store
INC HL ; Point to next element
DJNZ STEST ; Go dc next element check
JR EXIT ; All TBUF zero so exit

STOR1 LD (lX+0),0 ; Clear DRBUF element
LD HL,(COUNT) ; Get current count value
INC HL ; Advance it
LD A,H ; See if over or at 512 bytes
CP 1 ;
JP NC,OVRFW ; Yes then overflow
LD (COUNT),HL ; Put back advanced count
LD DE,(CUROW) ; Get current row pointer in DE
LD HL,TBUF ; Get TBUF pointer in HL
LD BC,0006 ; Count for six motors
LDIR ; Copy TBUF to ARST(1)
LD (CUROW),DE ; Replace updated row pointer CUROW
CALL CTBUF ; Clear buffers

EXIT POP HL ; *
POP BC ; * Restore Registers
RET ; Now return to caller

OVRFW LD HL,OVFMS ; Print overflow situation
CALL PSTR ; Message
CALL GCHRA ; Get response
CALL PNEWL ; Print a new line
CP 'D' ; User typed a 'D'
JP Z,REDO ; Yes then clear all
CP 'S' ; User typed an 'S'
JR Z,EXIT2 ; Yes exit with sequence saved
JR OVRFM ; Bad input, try again

REDO CALL INIT ; Clear all arrays etc
EXIT2 POP HL ; *

POP BC ; * Restore Registers
POP BC ; Throw away return address
JP QUES1 ; Back to main loop

*4 - 44*



SUBROUTINE RESET

; This subroutine clears the POSAR array

RESET PUSH BC ;
PUSH DE ; * Save Registers
PUSH HI. ; *
LD HL,POSAR ; Point to POSAR start
LD DE,POSAR+1 ; Point to next element
LD (HL),00 ; Clear first POSAR element
LD BC,11 ; Eleven more row counts to clear
LDIR ; Clear POSAR array
LD HL,STRST ; Print "ARM RESET" message
CALL PSTR ; and
POP HL ; *
POP DE ; * Restore Registers and
POP BC ; *
RET ; Return to caller

*4 - 45*



INPUT/OUTPUT ROUTINES

; PUTCHR prints a character in A

PUTCHR PUSH AF ; Save AF
PUSH DE ; Save DE
CALL PCHR ; Print character in A
POP DE ; Restore DE
POP AF ; Restore AF
RET ; Done, Exit

; PSTR prints a string pointed to by HL

PSTR PUSH BC ; * Save registers that are
PUSH DE ; * corrupted by the TRS80
CALL PUTSTR ; * Print the string
POP DE ; * Restore Registers
POP BC ;
RET ; Done, Exit

: PSPAC prints a space character

PSPAC PUSH AF ; Save AF
LD A,20 ; A = Space character
CALL PUTCHR ; Print it
POP AF ; Restore AF
RET ; Done, Exit

; PNEWL prints a new line to the screen

PNEWL PUSH AF ; Save AF
LD A,0DH ; A = Newline character
CALL PUTCHR ; Print it
POP AF ; Restore AF
RET ; Done, Exit

: SCKBD Scans the keyboard once and returns, non
; zero if character found

SCKBD PUSH DE ; Save DE
CALL KBD ; See if character is there
POP DE ; Restore
RET ; Done, Exit

; GCHRA gets a character from keyboard and displays it

GCHRA CALL GCHR ; Get a character
CALL PUTCHR ; Print it
RET ; Done, Exit

*4 - 46*



CLEAR SCREEN ROUTINE

; Simple scrolling type screen clear

CLRSC PUSH BC ; Save used register
LD B,16 ; Get screen row count

UP1RW CALL PNEWL ; Print a new line
DJNZ UP1RW ; Do 16 times
POP BC ; Restore Register
RET ; Exit

*4 - 47*



DELAY ROUTINES
; Delay for 10 * B + 10 M cycles

DELSW PUSH BC ; Save BC
DELS1 PUSH BC ; Delay for 11 T state

NOP ; 4 T state delay
NOP ; 4 T state delay
POP BC ; Delay for 11 T states
DJNZ. DELS1 ; Do delay times value in B
POP BC ; Restore BC
RET ; Exit

DELS PUSH BC ; Save BC
LD B,20 ; Set B for 0.001 sec delay (apx)
CALL DELSW ; Do delay
POP BC ; Restore BC
RET ; Exit

DELT PUSH BC ; Save BC
LD B,0 ; Set B for 0.01 sec delay (apx)
CALL DELSW ; Dc delay
POP BC ; Restore BC
RET ; Exit

DELLN PUSH BC ; Save BC
LD B,200 ; Set B for 1.0 sec delay (apx)

DDDD CALL DELSW ; Do delay
DJNZ DDDD ; Do next delay section
POP BC ; Restore BC
RET ; Exit

*4 - 48*



FULL STEPPING AND HALF STEPPING THE MOTORS

Two tables are shown below, the first indicates the sequence for
full stepping the motors and the second table shows the pulse
pattern for half stepping the motors.

FULL STEPPING SEQUENCE

QA QB QC QD STEP

1 0 1 0 1
1 0 0 1 2
0 1 0 1 3
0 1 1 0 4

HALF STEPPING PULSE SEQUENCE

QA QB QC QD STEP

1 0 1 0 1
1 0 0 0 1.5
1 0 0 1 2
0 0 0 1 2.5
0 1 0 1 3.0
0 1 0 0 3.5
0 1 1 0 4
0 0 1 0 4.5

The documented program contains a table FTABL which is shown
below. This table contains the step sequence for full stepping
also shown below is the new table FTABLH which contains the
sequence for half stepping. To use this table (FTABLH) in the
program it will be necessary to alter a few lines of code in the
DRAMT routine. The comparison with 5 CPI 5 should be changed
to a comparison with 9 and the program line LD A,4 should be
changed to LD A,8. The table FTABL should now be changed so
it appears as FTABLH

FULL STEP TABLE
Step number

FTABL DEFB 192 1
DEFB 144 2
DEFB 48 3
DEFB 96 4

HALF STEP TABLE
Step number

FTABLH DEFB 192 1
DEFB 128 1.5
DEFB 144 2
DEFB 16 2.5
DEFB 48 3
DEFB 32 3.5
DEFB 96 4
DEFB 64 4.5

*4 - 49*



4 - 49a



If you compare the table values with the tables
on the previous page you will note a difference,
this is because QB and QC are exchanged in the
above table due to the hardware switching these
two lines.

NOTE

REMEMBER WHEN WRITING PROGRAMS DIRECTLY DRIVE
THE ARM SO THAT THE QB AND QC OUTPUT BITS SHOULD
BE REVERSED, SO THAT THE TOP FOUR BITS ARE:-

D8 = QA
D7 = QC
D6 = QB
D5 = QD

*4 -50*



CONSTRUCTION OF A SUITABLE PORT FOR THE ARMDROID

A circuit diagram is given which describes in particular the
construction of an 8 bit bi-directional, non latched port. The
circuit as given is for the TRS80 bus, but it should be
possible with reasonably simple modifications to alter it for
most Z80 type systems.

The circuit described is a non latched port so the output
data will appear for only a short period on the 8 data lines.

As can be seen from the diagram, the circuit draws its 5 volt
power supply from the arm's interface port, and not from the
processor it is connected to. The port was constructed this
way due to the fact that some commercial microprocessor systems
do not have a 5v output supply.

When the above circuit is connected to the arm's interface card
the bottom bit is usually pulled high, thus if the user inputs
from the port at any time the data presented will mirror the
state of the reed switches.

To output data to the arm using this port the user should send
the data to the port with the bottom bit cleared. The data
will then be latched through to the addressed arm motor latch.

The components for the described port should be easily
available from most sources.

*4 - 51*



TRS80 8 BIT INTERFACE (NON LATCHED BI-DIRECTTONAL)

*4 - 5 2 *



CONNECTION OF THE ARMDROID TO THE TRS8O PRINTER PORT

The TRS8O printer port can be used to drive the robot arm, but
when using the printer port it will not be possible to read
the reed-switches connected to the arm as this port is not a
bi-directional port. The TRS8O to ARMDROID connections are
shown below.

TRS8O PRINTER PORT ARMDROID CONNECTION ON
PIN CONNECTIONS INTERFACE BOARD

18 0 volts
17 D8
15 D7
13 D6
11 D5
9 D4
7 D3
5 D2
3 Dl

The software driving the motors should output data to the robot
arm in the following manner.

The following Z80 code sequence assumes the correct driving
pattern and motor address is in the Z80 accumulator.

OR 0 1H ; Set bit Dl
LD PORTAD,A; Send data to port
AND 0FEH ; Clear bit Dl
LD PORTAD,A; Now latch data pulse to

; selected motor

In the case of the TRS8O level ll the printer port address is:

PORTAD equals 37E8H

*4 - 53*



CONNECTION OF ARMDROID TO PET/VIC COMPUTERS

PET/VIC USER PORT CONNECTOR

PIN NO PET/VIC ARMDROID

NOTATION NOTATION

C PAO Dl
D PA1 D2
E PA2 D3
F PA3 D4
H PA4 D5
J PA5 D6
K PA6 D7
L PA7 D8

N GROUND GROUND

I/O Register Addresses (User Ports)

VIA Data Direction Control: 37138

PET Data Directional Control Register: 59459

VIC I/O Register Address: 37136

PET Data Register Address: 59471

The data direction registers in the VIA define which bits
on the respective user ports are input and which are to be
used as output bits. A binary one in any bit position defines
an output bit position and a zero defines that bit as an
input bit.

*4 - 54*



SIMPLE BASIC ARM DRIVER FOR VIA (PET/VIC)

5 L = 37136: Q = 37138

10 PRINT "VIC ARMDROID TEST"

20 PRINT

30 PRINT "HALF STEP VALUES"

40 T = 8: C = 2: S = 10: M = 1: I = 1: A$ = "F"

50 FOR I = 1 TO T: READ W(I): PRINT W(I): NEXT I

60 POKE Q, 255

70 INPUT "MOTOR NUMBER (1-6)"; M

80 IF M<1 OR M>8 THEN 70

90 INPUT "FORWARD BACKWARD"; A$

100 IF A$ = "F" THEN D = O: GOTO 130

110 IF A$ = "B" THEN D = 1: GOTO 130

120 GOTO 90

130 INPUT "STEPS"; S

140 IF S<1 THEN 130

150 O = M + M +1

160 FOR Y = 1 TO S*C

170 F = W(I) + O

180 POKE L,F

190 POKE L,F-1

2OO IF D = 0 THEN 230

210 Y = Y + 1: IF Y>T THEN Y = 1

220 GOTO 240

230 Y = Y - 1: IF Y<1 THEN Y = T

240 NEXT Y

250 GOTO 70

260 DATA 192, 128, 144, 16, 48, 32, 96, 64

THE VALUES FOR L AND Q FOR THE PET ARE

Q = 59459 = DATA DIRECTION
L = 59471 = I/O

*4 - 5 5 *



MOTOR STEP RELATIONSHIP PER DEGREE INCREMENT

Below are shown the calculations for each joint to enable the
user to calculate the per motor step relationship to actual
degree of movement.

These constants are necessary for users wishing to formulate
a cartesian frame reference system or a joint related angle
reference system.

Base

Motor step angle x ratio 1 x ratio 2

7.5 x 20 teeth x 12 teeth
72 teeth 108 teeth

= 0.2314 degree step or 4.32152 steps per degree.

Shoulder

7.5 x 14 teeth x 12 teeth
72 teeth 108 teeth

= 0.162 degree per step or 6.17284 steps per degree

Elbow

Same as shoulder joint

Wrists

Same as base joint calculations

Hand

7.5 x 20 teeth x 12 teeth
72 teeth 108 teeth = 0.231 degree per step

pi x d x 0.231 = (0.0524/2)mm

360

=0.0262mm = hand pulley motion per step

Total hand open to close pulley movement = 20.0mm

Angle traversed by single finger = 50 degrees
50° x 0.0262mm
20.0 mm

= 0.0655 degrees per step or 15.2672 steps per degree

pi = 3.1415926

d = 26mm = pulley diameter

*4 - 56*



SOME OVERALL DIMENSIONS

Shoulder pivot to pivot = 190mm

Forearm pivot to pivot = 190mm

Finger wrist pivot to fingers closed = 90mm
wrist pivot to finger open (90) = 99mm

Bottom of base to shoulder pivot = 238mm

ANGULAR JOINT SPANS

Shoulder up = 153 ,down 45

Forearm up = 45 ,down 150

Wrist up = 100 ,down 100

Base no limit ,but suggest caution not to
overwind cables in base

Hand fingers move over 50

(All above measurements are in degrees)

NOTE

The above measurements were taken with the arm joints
held in a horizontal plane:

*4 - 57*



SOME EXTRA POINTS TO BEAR IN MIND

a) Long Lead of LED goes to NEGATIVE
Short lead of LED goes via 4.7 kohm Resistor
to POSITIVE

b) Due to LED hole being slightly too large a grommet
will first have to be fitted to the LED and its holder
can then be super glued if necessary into the grommet.

c) The Torque available is largely a function of speed
and hence the user can expect performance to deteriorate
as speed is increased. Tables are supplied earlier
in the manual.

FINAL NOTE

BEST WISHES AND GOOD LUCK

*4 - 58*


