
TecQuipment



MA2000 ROBOT
Operators Manual

The equipment described in this manual is
manufactured and distributed by the

T E C Q U I P M E N T
Group of Companies

Suppliers of Technological Laboratory
Equipment designed for Teaching

BONSALL STREET, LONG EATON, NOTTINGHAM, NG10 2AN, ENGLAND
TELEPHONE: LONG EATON 722611 TELEX: 377828 FAX: 731520

VEK/RR/1187/i © TecQuipment Ltd



© TecQuipment Limited

No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopy,
recording, or any information storage and retrieval system, without
the express permission of TecQuipment Limited.

Whilst all due care has been taken to ensure that the contents of
this manual are accurate and up to date, no responsibility, direct
or consequential, can be accepted for any errors or omissions.

A Packing Contents List is supplied with the equipment and it is
recommended that the customer checks carefully the contents of the
package(s) against the list ensuring that no items are missed.

Should there be any items missing, the customer should contact the
local TecQuipment agent or TecQuipment direct.



C O N T E N T S

PAGE

Preface: Safety with Robots

1. INTRODUCTION - Concept and Terminology 1

2. UNPACKING AND INSTALLATION 5

2.1 Unpacking 5

2.2 Installation 6

2.3 Making the Connections 9

2.3.1 Installation of the IBM Interface MA2000w 10

2.3.2 Conversion of Robot Controller for IBM 15

2.3.3 Computer Connections 17

2.3.4 Controller Connections 17

2.3.5 Other Connections 18

2.4 Powering up the MA2000 System 19

2.5 Loading the Operating System 19

3. SAFETY PROCEDURES AND ROBOT TESTING 22

3.1 Emergency Stop and Stop 22

3.2 Robot testing by Local Control 22

4. DRIVING THE MA2000 ROBOT 25

4.1 Position Programming 25

4.1.1 Steps and Sequences 25

4.1.2 Display Format 27

4.1.3 A Trial Sequence 27

4.1.4 Running a Sequence 35

4.2 Control Programming 37

4.2.1 Programming the data grid 37

4.2.2 Rate Command 39

4.2.3 Wait Command 39

4.2.4 Jump Command 40

4.2.5 The Demonstration Sequence 44

4.3 Additional Programming Techniques 51

4.3.1 Lead-by-the-nose 51

4.3.2 Continuous Path Programming 53

4.3.3 Off Line Programming 55



5. CONTROL KEYPAD 57

5.1 Main Control Keys 57

5.2 Multifunction Keys 57

5.3 Drive Function Keys 59

5.4 Utility Function Keys 59

6. DESCRIPTION OF AN MA2000 SEQUENCE 61

7. USE OF MODES 68

8. PROGRAMMING GUIDELINES 75

9. PROCESS INPUTS AND OUTPUTS 78

10. FAULT INDICATIONS 79

11. DEMONSTRATION SEQUENCE 80

12. MA2000p BUTTON BOX



S A F E T Y WITH R O B O T S

(a) Safety for Humans

Robots seem to be very clever, responding eagerly to the instructions of
their operators, but in reality they are merely machines performing
mechanical functions. As such they are sublimely unaware of the presence
of human heads and hands and eyes, and have no instinct or common sense
to warn them of imminent danger to life or limb or sight.

In any collision between a robot and a human, the human is the most
likely to suffer permanent injury, and the human is the only one who
will feel pain.

Keep out of the way of moving robots. Stay outside the operating en-
velope while the robot is active. Make sure other people do the same.

(b) Safety for Sleeping Robots

This is not to say that robots cannot be damaged by humans. Robots are
particularly vulnerable when immobile - when being transported or un-
packed or set up, and once they have been set up they are likely to have
their joints sprained if they are moved into "limits" too violently.

(c) Safety for Robots under Tuition

Although the method of robot teaching called 'Lead-by-the-nose' calls to
mind the image of a tiny farmboy controlling a massive bull by means of
a ring through the bull's nose, this metaphor has its limitations. When
a robot is being taught by this method it has no motive power of its
own, and unlike the bull it cannot even stand upright. Support must be
given to the shoulder and elbow, even if their positions are not being
altered during the present move. Even if you are only moving the "end
effector" you will need to take the weight of the rest of the robot.

(d) Safety for Robots in Motion

Robots are also capable of damaging themselves. If a moving robot
collides with an inanimate object it is obviously likely to suffer. Be
kind to your robot friend and don't drive him into walls or control
boxes or smash him into his own base board. He wont complain, he will
just break.



This manual is intended for use with computers using BBC BASIC. It is
based on the IBM using BBC BASIC 86. Notes have been included for BBC
computer users wherever the operations differ from the IBM. Whatever
computer is used, it is always advisable to use the tutor text when
starting and to READ THE PROMPTS.



-1-

1. INTRODUCTION

The MA2000 robot is designed to give a full range of facilities at low

cost. The designers have made every effort to simplify the operating

procedures, but, even so, the MA2000 is a complex piece of equipment.

Driving it is every bit as difficult as driving a motor car, and re-

quires just as much patience, persistence and skill.

The following guidelines MUST BE READ and UNDERSTOOD by all who intend

to operate the robot.

UNDER NO CIRCUMSTANCES SHOULD THE ROBOT BE OPERATED WITHOUT PROPER

INSTRUCTION OR UNDERSTANDING OF THE FOLLOWING NOTES.

NOTE: The robot has a reach of 500mm and a "dead lift" of 1kg. This

means it will support lkg at the end effector attachment point

(i.e. 480mm radius). When the robot is lifting and moving weights,

a realistic maximum is 500gm.

Concept and Terminology

Before you switch on your new robot, it is worthwhile checking that we

both speak the same language (especially if you are new to robotics),

and that you understand the principle of the robot operation.

We'll start on the basics:

Mechanically, the robot consists of an arm (this being what most people

refer to as "THE ROBOT") with 6 joints in similar positions as on a

human arm.

Refer to figure 1 and your own robot and you will see that first of all

the robot can pivot on its base about a vertical axis; this is the WAIST

motion. Next is the SHOULDER motion with a pivot point just above the

waist motion. Halfway along the robot is the ELBOW joint. These three

motions, the major axes, do the majority of the work in a typical robot

cycle which explains the chunkiness of these motors compared with the

remaining three.



- 2 -

WAIST
RANGE=1-999 [270*]
PARK POSITION = 500

PITCH
RANGE =1-999 [180*]
PARK POSITION = 500

ELBOW
RANGE=1-999 [270*]
PARK POSITION = 100

/ / ROLL
RANGE=1-999[180*]
PARK POSITION = 500

YAW
RANGE=1-999 [180*1
PARK POSITION = 500

SHOULDER
RANGE=1-999[270*]
PARK POSITION=400

FIGURE 1 :- ROBOT MAJOR AND MINOR AXES SHOWING PARK POSITION



-3-

The final three motions, the minor axes, at the end of the robot, (which
you may consider as being a hand; the "proper" name in robot circles is
"end effector"), are the PITCH, which moves vertically up and down, the
YAW, which gives a sideways swivel, and the ROLL which imitates, for
example, a screw driver movement.

The range of movement on the major axes is 270° and 180° on the minor
axes. This means that the robot can reach most points inside an imagin-
ary hemisphere with a 500mm radius, centred on the shoulder joint.

Turning to the electrical components (housed in the large box) your
money has bought you a MOTOR CONTROLLER, and an interface to the HOST
COMPUTER. Finally, there is the KEYPAD which is the calculator-like box
which plugs, via its long cable, into the front panel of the motor
controller.

The keypad is the channel of communication with the robot. With it you
can, for example, say in which direction you want the robot to move and
how fast. The computer translates the keys that you press into signals
to the motor controller which then provides the power to the motors to
move them accordingly. Having moved the robot to a position, the
computer can then remember the position and allow you to program the
next.

Once you are satisfied that you have a sequence of moves that will per-
form your task, then the sequence can be initiated via one push button
on the keypad. The computer will then step through the stored sequence
sending the positions to the motor controller which in turn provides the
motor power to move the robot.

Having introduced you to the basic concept of the robot operation and
some of the terms, once your robot is installed you can move straight on
to operating the robot by following the book step-by-step.



1M

FIG 2.2.1

FIG 2.2.2



-5-

2. UNPACKING AND INSTALLATION

It is important that the following unpacking and installation guidelines
are carefully read and understood.

The robot arm could easily be damaged if it is handled incorrectly.

2.1 Unpacking

Suitcase-type container

(1) Check that the robot arm case is resting with its lid facing up-
wards .

(2) Unlock the case clips and remove the lid.

(3) Holding the robot at its yellow base and elbow gently lift it out
of the case.

It is important that the weight of the robot arm is taken when
moving it between case and installation site.

(4) Keeping the arm vertical, move the robot to its installation site.

(5) Set the robot base down on its flat surface.

Failure to place the robot on a flat surface could damage the

robot.

Conventional container
(1) Ensure that the case is resting with its lid uppermost.

(2) Remove the screws securing the lid; and lift the lid vertically
away from the container.

(3) On the side panel secured only by screws, remove the screws and
lift away the panel.

(4) Remove the controller and stow in a safe place.

(5) Remove the packing notes and ancillary equipment, stowed below the
shelf housing the robot and controller.

(6) Remove the four M6 bolts securing the robot base to the plywood

shelf.

(7) On the wooden clamp holding the robot forearm secure, slacken off

the bottom M10 bolt and remove the top M10 bolt.



-6-

(8) Remove any ties securing the cables to the plywood shelf.

(9) Gently lift the forearm to the vertical and use the other hand to
grasp the waist motor; lift the robot away from the packing case.

(10) Set the robot base down on a flat surface.

2.2 Installation

Choosing your installation site

When choosing a site for the robot, it is important to consider the
operational area involved. The site must certainly be flat and free from
any immediate obstruction.

Although the actual robot operating space should be depicted by a hemi-
sphere, it is more practical to use a cubic representation. We suggest
that a cube of dimension 1m x lm x 0.9m will be the necessary space
needed to ensure complete operating freedom of the robot.

Fig 2.2.1 illustrates the robot operating space.

Having satisfied the siting requirements, the robot must now be mounted
on a suitable board. The robot suitcase-type container can be used as
the mounting board, otherwise a suitable mounting board will have to be
made.

The first set of instructions are relative to those using the robot case
as the mounting board.

Transforming the robot case into a robot base
(Suitcase-type container only)

1. Place the two halves of the case side by side.
The set of drilled holes correspond to the mounting holes in the
underside of the yellow robot base. The cable side of the yellow
robot base should be mounted on the case base and the other side on
the case lid.
You will find the remaining instruction impractical without the aid
of a colleague. THEREFORE HELP SHOULD NOW BE SOUGHT!



-7-

2. Use one person to hold the robot horizontally, again taking care to

take the weight of the robot arm. The other person is then free to

line up the holes in the case base to those in the robot base (see

fig 2.2.2).

3. Using the M6 screws included in the MA2000 package, secure the

robot base to the case base.

4. Having checked that the robot is firmly fixed to the case base, now

line up the remaining two holes in the robot base to those in the

case lid.

5. Secure the robot base to the case lid using the M6 screws provided.

6. Check that all the screws are tightly finished.

Now carefully place the entire unit in your chosen installation site.

Keep the robot arm in a vertical position when it is left unconnected to

the computer/controller.

Designing and installing a personal mounting board

(Robots in conventional container)

We recommend that the board should be no smaller than 1.2m2. A single

piece of plywood 12mm thick or greater will constitute an ideal board.

Having found a suitable board, the next procedure is to mark out the

hole positions.

1. Lay the mat provided with the robot (Fig 2.2.3(a)) on to the

plywood board.

2. The robot base area marked in the centre of the mat also has the

hole positions marked for the securing bolts. Check that these

dimensions agree with those shown on Fig 2.2.3(b).

3. Drill the four holes as indicated using a 6.5mm drill and remove

any burrs.

4. Counter sink the holes on one side of the board. This is done to

retain the flatness of the board.



4 HOLES 06.5

Fig 2.2.3(b) Drilling Detail
on Robot Mat

Fig 2.2.3(a) TQ Robot Mat



-9-

5. Check that the M6 screws included in the MA2000 package fit the

drilled holes.

WE ARE NOW READY TO MOUNT THE ROBOT BASE
ONTO THE PERSONAL MOUNTING BOARD.

6. Place two tables approximately 0.4m apart.

7. Rest the board on the two facing edges of the tables, making sure
that the countersunk side faces downward.

8. Looking at the underside of the board, the countersunk holes should
be accessible in the space between the tables. If all, or some, of
the holes are hidden by the board/table overlap, gently move the
board until all four holes are visible.

9. Ensure that the mat is in position on the board and place the robot
base over the drilled mounting holes in the topside of the board.

10. The vertical position of the robot arm must be maintained by a
colleague.

11. Using the M6 screws provided, fix the robot base to the board.

12. Check that all screws are tightly fastened and place the entire
unit in its installation site.

2.3 Making the Connections

First check that there is a mains supply near to the installation site.
It is likely that a mains adaptor will be needed because several items
of equipment require mains supply. The equipment should then be in-
stalled in the user work area free from robot intervention.

It is advisable to keep the 'emergency stop' button, on the controller
face panel, within easy reach.



-10-

2.3.1 Installation of the IBM Interface, MA2000w

1. Tools Required

Medium flat blade screwdriver.

2. Preliminary Steps

Position system unit switch to OFF.

Position any external option power switches to OFF.

(Printer, monitor, etc)

Unplug system unit and all other options.



-11-

3. Installation

Set keyboard and other options away from the work area.

Position system unit to allow rear access.

Use a flat blade screwdriver and loosen the two cover mounting

screws counter-clockwise.

Cover Mounting Screws

CCW

Carefully slide the cover away from the rear and towards the front,
until it will go no further. Tilt the cover up and remove it from
the base, and set aside.



-12-

Look at the inside left of the system unit. There are five slots.

It is recommended that slot 3 is used.

Rear Panel



-13-

Remove the screw that holds the system expansion slot cover in

place.

ccw
Save

Rear Panel

Hold the interface by the top corners and press into the chosen

slot.

Rear Panel



-14-

If you have any other options to install, do this now.

Replace cover on system unit in the reverse of removal.



-15-

When the cover is all the way to the rear, align the screw with the
thread tabs and tighten.

The system may now be re-cabled and verified as explained in the
appropriate IBM manual.

2.3.2 Conversion of Robot Controller

These instructions need only be used if the system used a BBC computer
which is being replaced with an IBM or compatible machine.

1. Tools Required

Medium flat bladed screwdriver.
Soldering iron.



-16-

2. On the later versions of the controller a switch is fitted on the

base adjacent to the centre of the front panel; move this to

position B. If the switch is not fitted then proceed as follows:

(a) Disconnect the robot controller from the mains supply.

(b) On the robot controller disconnect the following:

(i) The 12-way and 24-way sockets for the robot arm.

(ii) The 20-way keypad connector,

(iii) The 26-way computerconnector.

(iv) The leads from the 0/P terminal block (label each lead for

ease of connection).

(c) Remove the robot controller to a workbench.

(d) Remove the controller top plate as detailed in Fig 2.3.2.1.

remove
three sc

each end

3.remove rear strip

4.remove top plate

2.slacken remaining

screws each end

Fig 2.3.2.1 Removal of Controller Top Plate

(e) Locate the controller PCB 820-41349.

(f) With reference to Fig 2.3.2.2; locate the wire link between 9

and 10, unsolder the link and reconnect between 10 and LK.

(g) Refit the controller top plate.



-17-

Fig 2.3.2.2 Controller PCB 820-413A9 Wired for BBC Operation

(h) Refit the robot controller in its installed position and

reconnect the plugs and plugs and leads disconnected in para

2.b.

2.3.3 Computer Connection

Connect one end of the 26-way ribbon connector to the 26-way plug on the
MA2000w interface card for the IBM and to the 1 MHz Bus for the BBC.

Always ensure that the ribbon cable connections are made with the ribbon

stripe going to pin 1. Note: Pin 1 is marked with an arrow on the

connector body.

2.3.4 Controller Connections

Always make sure that ribbon cable connections are made with the ribbon

stripe going to PIN 1 in the connector.

1. Connect the keypad ribbon cable plug to the connector labelled KEY-

PAD to the front face panel of the controller.

2. Connect the free end of the computer ribbon cable to the connector

labelled COMPUTER.



-18-

3. Connect the two plugs at the end of the screened robot cable into

the back of the controller. One of the plugs should be 12-way, the

other 24-way. Because of the physical dimensions of the controller

connectors, there should be no ambiguity as to which plug fits

which connector.

2.3.5 Other Connections

1. Make sure that the 4-way mains adaptor is disconnected from the

mains.

2. Plug the mains leads, from the controller and microcomputer into

the adaptor.

3. Set the equipment power switches to ON.

4. Connect the 4-way mains adaptor to the mains but do not switch on.

5. Check your connections against Fig 2.3.2.3.

6. Connect the plastic air line between the robot air inlet and a

clean dry regulated air supply (approximately 3 bar).

Fig 2.3.2.3



-19-

2.4 Powering-up the MA2000 System

Note: If the robot is going to be operated on its own, now is a good
time to connect in the decision box MA2000p (see enclosed instruction
sheet).

Switch the mains switch ON. The controller LIMITS light may light. Both
the red EMERGENCY STOP and COMPUTER FAULT indicators will light. We are
now ready to load the operating system.

2.5 Loading the Operating System

Note: paragraphs 1-5 are for IBM users and paragraphs 6 and 7 for BBC
users.

1. You will require a disc or discs containing the disc operating
system DOS and BBC BASIC(86) as well as the MA2000 robot software
disc.

2. Remove the protective card from the mini-diskette.

You may need to first unlock the diskette by turning the locking
key anti-clockwise (see fig 2.5.1).

3. Take the disc operating system (DOS) disc out of its protective
cover and place it in Drive A, ensuring that the disc slot enters
first and label face upwards (see fig 2.5.1).

Remember to lock the diskette by turning the locking key clockwise.

4. Switch ON the computer. (Some systems are fitted with RESET, this
may also be used). The system will now self-check and load DOS.

5. If BBC BASIC 86 has not been installed on your MA2000 disc then
carry out the following:

(a) Remove the DOS disc from drive A and fit the MA2000 disc. \
(b) Type in "INSTALL" and follow the screen prompts.

If BBC BASIC 86 is resident on your disc; once DOS has loaded,
remove the DOS disc from drive A and fit the MA2000 disc. Type in
MA2000 and the system will auto boot.

6. BBC users need only insert the MA2000 disc into the disc drive and "y
press <SHIFT><BREAK> for the system to boot. , J. ./ U



-20-

FIG 2.5.1



-21-

7. Because of limited memory space, the BBC will require you to answer

the following questions:

(a) CONTINUOUS PATH (Y/N)? Type Y

(b) How many SEQUENCE STEPS do you need? Type 30

(c) OFF LINE TEACHING (Y/N)? Type Y

(d) TUTOR TEXT (Y/N)? Type Y

(e) USER MODULE (Y/N)? Type Y

The computer will then respond with:

Room for 30 steps & 149 CP u steps

is this sufficient (Y/N)? Type Y

8. Once steps 1 to 5 or steps 6 and 7 have been completed, the

computer responds with:

TECQUIPMENT INTERNATIONAL LTD

Nottingham, ENGLAND.

MA2000

Issue 3A.03

Copyright (c) 1987 TECQUIPMENT LTD

CLEAR DATA AREA? (Y/N)

The COMPUTER FAULT light should remain lit on the controller front

panel.

This light will only go off when the software is actually running.



-22-

3. SAFETY PROCEDURES AND ROBOT TESTING

The MA2000 controller can be used as a safety and test device. The front
face panel of the controller should always be within easy reach of the
user. On the left hand side of the panel a push-button switch labelled
EMERGENCY STOP has been installed. You will also notice a similar button
labelled STOP amongst the bank of switches on the right hand side of the
panel. Both these switches offer a safety facility. The remaining
front panel controls are Robot Test controls.

We will first discuss the 'Emergency Stop' and 'Stop' buttons.

3.1 Emergency Stop and Stop

If the robot ever behaves unexpectedly or dangerously, press either the
Emergency Stop or Stop button. This will halt the robot motion
immediately.

The STOP button halts the robot instantaneously, but by then pressing
Auto, also on the controller panel, the robot will continue from where
it left off.

The EMERGENCY STOP button also halts the robot instantaneously, but does
so by cutting out the robot power supply. The robot will become dynamic-
ally unstable and will drift in position. Thus, when power is resumed
it will continue from a slightly different position. This new position
may be out of the robot's limits (or operating range) and certain
procedures must be used to bring the robot back into its limits (see
section 3.2).

The EMERGENCY STOP indicator may automatically light if the robot is
moved out of its limits when driving. Again, the robot must be brought
back into its limits (see section 3.2).

3.2 Robot Testing by Local Control

All individual six axes of the robot are restricted in operation. When
one, or more, of the robot joints has moved to a position outside its
operating range, the robot is said to be OUT OF LIMITS.



-23-

The green LIMITS light on the controller front panel only remains lit
when all six axes are within their operating range, i.e. IN LIMITS.

Whenever the limits light switches OFF, the controller will assume total
control over the robot and commands made by the microcomputer and key-
board will be ignored. The robot must be brought back into limits be-
fore computer/keyboard control is resumed.

The following robot TEST procedure is that also used to move the offend-
ing joint(s) back into LIMITS.

(If the robot is in LIMITS after loading the operating system, it is
still advisable to test the individual joints separately before continu-
ing to section 4).

The operating system should always be loaded before testing the robot.
If this has not already been done, refer to section 2.5 and follow the
loading instructions.

Having loaded the operating system, the screen will display:

CLEAR DATA AREA type (Y) on the ucomp. keyboard

A flashing message will then say:

CONTROLLER NOT IN AUTO press AUTO and then RESET on the
controller front panel.

TEST PROCEDURE

1. Press the STOP button on the controller front panel.

This switches the controller from Automatic (AUTO) to manual (or local
control) (STOP) allowing the user to test the robot.

2. Turn the selector dial on the right hand side of the controller to
your desired robot joint. The abbreviations around the dial are:

WST
SHD
ELB

Waist
Shoulder
Elbow

PCH
YAW
ROL

Pitch
Yaw

Roll

Try WST to begin with. Press TEST and RESET together.



-24-

3. Press and hold the controller TEST button.

The selected joint should rotate about its axis. The INCREASE button
rotates the joint clockwise, the DECREASE button anti-clockwise.

4. Try selecting the other joints with the dial and repeat the test
procedure.

Having completed the test for all joints, check that the LIMITS light is
lit. If the light does not show, use the test procedure to move the
joints until the robot is back in LIMITS. Otherwise proceed to section
4.



-25-

4. DRIVING THE MA2000 ROBOT

IMPORTANT!

Programming and driving the MA2000 robot requires patience and skill.
If you are an inexperienced user and at any time feel anxious about the
robot's behaviour, remember to press the controller EMERGENCY STOP
button to halt the robot (see section 3.1).

If you ever make a typing or keypad entry error, then press <ESCAPE> on
the keypad and continue.

The instructions contained in the manual should directly correspond to
those in the MA2000C user edit software. Do not use the manual as your
only user guide. The display instructions are there to help you and
should be carefully observed.

4.1 Position Programming

4.1.1 Steps and Sequences

The MA2000 Robot can be taught to perform a series of movements by
programming it to follow a sequence of steps. Programming the robot in-
volves feeding positional and control data to the robot using either the
keypad or microprocessor keyboard as an interface.

The robot sequence will always originate from a position termed the
'Park Position'. This is the position that the robot will automatically
move to when it is switched on (see fig 4.1.1) and is called 'Step 0'.

There are four different programming methods:

1. Point to point
2. Lead by the Nose
3. Continuous Path
4. Offline

'Point to Point' programming uses the keypad to move the robot through
the sequence of steps. It is perhaps the easiest method to grasp and
for this reason will be the first considered.



-26-



-27-

4.1.2 Display Format

Each step in a sequence is defined by a bank of position and control in-
formation. The information is conveyed to the user as a grid of numbers
on the display in the following manner:

rate mode input output wait jump
waist shoulder elbow pitch yaw roll gripper

The upper section of the grid represents CONTROL data, the lower section

POSITION data.

All the control numbers have default values. For this reason we can
program positional data and drive the robot without altering any control
data. An inexperienced robot driver can learn about position programming
without tackling control programming at the same time. Hence the learn-
ing process is considerably simplified.

The range of numbers allocated to positional definition is:

waist shoulder elbow pitch yaw roll gripper
grid 000- 000- 000- 000- 000- 000- open = 0
range 999 999 999 999 999 999 closed = 1

The numbers represent the angle through which each joint turns to reach
its destination. The angle ranges are 0° to 270° for the major axes
(WAIST, SHOULDER, ELBOW) and 0° to 180° for the minor axes (PITCH, YAW,
ROLL).

Fig 4.1.1 shows the robot Park Position and its corresponding grid.

4.1.3 A Trial Sequence (Point to Point Programming)

If you have already switched on the equipment, loaded the operating
system, and tested the robot, ignore instructions 1 to 3.

1. Switch on the mains power supply to the equipment (see section 2.3).

2. Load the operating system with the MA2000c disc (see section 2.4).



-28-

Caution: Ensure that the limits lamp on the controller is lit before

proceeding.

3. If necessary use the robot test procedure detailed in section 3.2).

The display should be flashing the message:

CONTROLLER NOT IN AUTO

4. Press AUTO and the RESET on the controller front panel.

The display should then read:

Check that it is

SAFE to MOVE the ROBOT

Then:

PRESS <EDIT> FOR TUTOR TEXT

To PARK the ROBOT press <STEP>

To MOVE the ROBOT press <DRIVE>

5. Check that there are no obstructions preventing the robot from

transferring to its Park Position. The Park Position is shown in

Fig 4.1.1. It may be helpful to refer to the diagram.

6. Press <EDIT> on the keypad to select the tutor text.

The display should then read:

This robot has six motions:

WAIST, SHOULDER, ELBOW,

PITCH, YAW & ROLL and a GRIPPER

STEP 0) 7 2 0 0 0 0

497 293 68 484 492 491 0

The display format used is:

STEP No) RATE MODE IN OUT WAIT JUMP

POSITION VALUES & GRIPPER



-29-

Give your instructions to the robot

using the CONTROL KEYPAD.

I will tell you which <KEYS>

to use at each stage

Press <STEP> to continue

This is a supplementary screen text provided to help inexperienced

users.

The display will now inform the user of the robot motions and dis-

play format. It may be helpful to refer to section 4.1.2.

7. Ensure that the robot operating envelope is FREE from OBSTRUCTION

and then press <STEP> on the keypad to continue.

The display should read:

Now

To PARK the ROBOT press <STEP>

To MOVE the ROBOT press <DRIVE>

8. Press <STEP> again and the robot should now move to its PARK

POSITION. If the robot behaves dangerously or unexpectedly press

the EMERGENCY STOP button and refer to section 3.1.

9. The screen should display:

MOVING TO PARK POSITION

Step 0) 7 2 0 0 0 0

500 400 100 500 500 500 0

Stored sequence number 0

Contains 0 steps & 0 CPu steps

Room for 250 steps & 1406 CPu steps

HOLDING AT STEP 0

This is the initial default step.

Press

<EDIT> to teach the robot what to do.



-30-

The lower grid numbers should already be familiar to the user. They
are the PARK POSITION numbers mentioned in section 4.1.2.

Ignore the upper grid numbers for now; they are the default control

data values.

Note: if in the following operations you press the wrong keys and
inadvertently give control to the host computer, then just press 0
<RETURN> to get back to the keypad.

10. Press <EDIT> (to teach MA2000 what to do).
The display should now read:

EDIT with tutor

STEP 0) 7 2 0 0 0 0
500 400 100 500 500 500 0

Press:
<STEP> <STEP> to select next step.

11. Press <STEP> <STEP>
The display should now read:

EDIT with tutor

STEP 1) 0 0 0 0 0 0
0 0 0 0 0 0 0

Press:
<DRIVE> to copy the present position

into this new step

12. Press <STEP> <STEP>.
This sets up the grid for the next step in the sequence, in this
case STEP 1 the first step of the sequence. Whilst gaining ex-
perience it is recommended that STEP 1 be left as a park position.

13. Press <DRIVE>.

This enters the present robot position and control information into
the step (1) grid. The Park Position data is therefore copied into
step (1). The purpose of this is to provide the system with a
reference position from which the robot will move.



-31-

14. The screen will now display:

DRIVE with tutor

Step 1) 0 0 0 0 0 0
500 400 100 500 500 500 0

Use the
<MOTION KEYS> to move the robot

to required position

The <DRIVE> key can be used to toggle
between SLOW and RAPID drive

Then press:

<LEARN> to store the current
positions into the step

<ESCAPE> to keep original values

15. Press <LEARN> - we wish to keep step 1 as a park position.
Press <STEP> <STEP> - move on to step 2.
Press <DRIVE> - copy step 1 into step 2 for a reference.

WE ARE NOW READY TO MOVE THE ROBOT AND TEACH IT A NEW POSITION.

The journey from the Park Position at step 1 to the new position is
called STEP (2).

16. Press <DRIVE> to select RAPID drive.
Note : Rapid DRIVE TUTOR is in inverse video at the top of the

screen.

17. Press the motion key labelled <SHOULDER>.
The robot's shoulder should move in a clockwise sense. The grid
number representing the angular displacement of the shoulder should
increase.

18. Press <DRIVE> to select <SLOW> drive.

19. Press the <SHOULDER> motion key again.
The shoulder joint will now only displace very slightly for each
nudge of the key.



-32-



-33-

You can toggle between rapid and slow drive by pressing the <DRIVE>

key.

20. Try some of the other motion keys. Continue when familiar with the

motion keys.
The following four diagrams demonstrate a few robot positions and
their coresponding positional grid values.
Match the data values shown on the step (2) example sheet to those
on your screen using the motion keys. When the values perfectly
agree, your robot should be in a vertical position (see Fig 4.1.2).
It is a good idea to move to roughly the desired position on RAPID
drive and to move the last degree or so on nudge control.

21. When you are satisfied with the position press <LEARN>.
The computer will store this new position in step (2). Whenever the
robot is asked to perform step (2) it will move to the vertical
position.
The display should nor read:

EDIT with tutor

STEP 2) 7 2 0 0 0 0
500 500 500 500 500 500 0

Press:

<STEP> <STEP> to select next step

<STEP> <nn> <ENTER> to select step

<DRIVE> to move the robot to position

<LEAD> to select offline teaching

<RUN> to execute the taught steps

<ENTER> for further instructions

Note: Version 4A users will have an additional line:

<PATH> to toggle XYZ co-ordinates.





-35-

22. Press <STEP> <STEP>.

The information grid for step (3) should now be displayed on the

monitor.

23. Press <DRIVE> to copy the present robot position into step (3) as a

reference position.

24. Use the motion keys to position the robot horizontally (see Fig

4.1.3).

25. When you are satisfied with the position press <LEARN>.

The computer will store this new position in step (3) and the robot
will move to the horizontal position whenever it is asked to perform
step (3).
The positional programming procedure is therefore:

<STEP> <STEP> to select next step grid in sequence
<DRIVE to enter reference position
<MOTION> to move robot to new destination
<LEARN> to store the positional data in step that has

just been completed.

26. Using the above procedure, teach the robot a fourth step by matching
the positional values to those on example sheet step 4 (see Fig
4.1.4).
Don't forget to press <LEARN> to store the position.

Having completed the short sequence of steps, we now wish to run through
the steps.

4.1.4 Running a Sequence

(a) Press <STEP> <1> <ENTER>

(b) Press <DRIVE>. The robot should move to the Park Position.

(c) Press <LEARN>

(d) Press <RUN> <RUN>. This executes the entire sequence.

The robot should now run through the positions and stop when it has
reached step (4).



-36-

The display will now read:

Press <HOLD> to halt execution

STEP 2) 7 2 0 0 0 0

500 500 500 500 500 500 0

STEP 3) 7 2 0 0 0 0

500 135 500 500 500 500 0

STEP 4) 7 2 0 0 0 0

500 135 140 500 500 500 0

STEP 5) 0 0 0 0 0 0

0 0 0 0 0 0 0

EXECUTION FAULT at STEP 5

Sequence 0 halted

Ignore the comment "EXECUTION FAULT at STEP 5". It simply tells us that
step 5 is an empty step and cannot therefore be executed as part of the
sequence.

Whenever the comment does appear, run through the following robot Park
Procedure before continuing.

Robot Park Procedure after an Execution Fault

(a) Press <STEP> to continue.

(b) Press <EDIT>.

(c) Press <STEP> <1> <ENTER>.

(d) Press <DRIVE>. (Robot should move to Park Position with
this command).

(e) Press <LEARN>.

Stepping a Sequence

Once the robot has been returned to step 1 the sequence can be stepped
through as follows:

(a) Press <RUN>



-37-

(b) Press <STEP> to observe each step consecutively.

(c) On reaching step 4 press <EDIT> to take you back to tutor text.

Now try adding a few additional steps of your own to the sequence.

If necessary, refer to section 4.1.3 and create 3 new steps. Call your

steps step 5, step 6 and step 7. Then refer to section 4.1.4 to run the

sequence.

An 'execution fault' message will still appear on the screen upon com-

pletion of the program RUN. This time however, the execution fault will

be found at step 8; this is the first empty step reached.

When you feel confident enough to further your 'robot education'

Press <EDIT>

Press <CLEAR> <5> <ENTER> <7> <ENTER>

This will empty the data grids for the additional steps that you have

created and leave the original 3 steps unaffected for use in the next

section.

WE ARE NOW READY TO LEARN ABOUT

ROBOT CONTROL PROGRAMMING.

4.2 Control Programming

4.2.1 Programming the Data Grid

Now that we have programmed the robot's positional data we can edit the

control parameters.

The control data grid is the upper section of the information grid and

has the following format (also see Fig 4.2.1).

RATE MODE INPUT OUTPUT WAIT JUMP control grid
(with default

7 2 0 0 0 0 values)

The numbers in the above table are the control default values. These

values will be automatically assumed unless the user makes any alter-

ation to them.





-39-

The following table shows the range of numbers allocated to each cell in

the control grid.

RATE MODE INPUT OUTPUT WAIT JUMP control grid
(with cell

1-9 1-9 1-4 1 or 4 0-255 0-STEP X ranges)
(-1)-(-4) (-1)or(-4) '0' means jump

function inhibited

We will consider the rate, wait and jump control parameters.

4.2.2 Rate Command

Rate simply determines the speed at which the robot will travel when it
performs the step. A value of Rate = 1 is the slowest speed possible.
The maximum travelling speed is achieved when Rate is set to 9.

We will now alter the rate for step (4) in the example sequence con-
sidered in section 4.1.1.

If the screen shows: 'EXECUTION FAULT AT STEP X'

Then run through the Park procedure on page 34. Otherwise continue.

1. Press <STEP> <4> <ENTER>
The step (4) information grid should now show on the monitor screen.

2. Press <RATE> <4> <ENTER> RATE COMMAND
This sets the step 4 rate cell to rate '4'. Note the cell number
change in the control grid (see Fig 4.2.2).
Now run the sequence.

3. Press <RUN> <RUN>.
The final step in the sequence, step (4), will move considerably
slower than the preceding steps.
The screen will display: 'EXECUTION FAULT AT STEP 5'. Use the pro-
cedure on page 34 to park the robot before continuing.

4.2.3 Wait Command

The computer will usually send the grid information to the robot as soon
as the previous one has been completed. If you require the robot to



-40-

wait at the end of a given step before proceeding to the next, use the

WAIT command.

The control data grid contains a cell labelled WAIT (see Table 1).

The number range for the cell is 0-255, each unit representing a wait

for 1 second. The maximum wait is therefore 255 seconds.

We will now edit the step 3 control grid in the example sequence to

create a wait of 8 seconds between step 3 and step 4.

1. Press <STEP> <3> <ENTER>

The step (3) information grid should now show on the monitor screen.

2. Press <WAIT> <8> <ENTER> WAIT COMMAND

This sets the step (3) wait cell to wait '8'. Note the cell number

change in the control grid (see Fig 4.1.3).

Now run the sequence.

3. Press <RUN> <RUN>.

The robot will wait 8 seconds before commencing step (4) in the ex-

ample sequence. Step (4) will still move at a slower rate.

The screen will display: 'EXECUTION FAULT AT STEP 5'. Use the park

procedure in section 4.1.4 to park the robot before continuing.

4.2.4 Jump Command

The JUMP command is an extremely useful feature. It can be used to

either cycle the sequence around or to insert additional step (5) be-

tween existing adjacent steps.

The control grid contains a cell labelled JUMP. The number range for

the cell is '-' to 'X'. (Where X is the number of the step we are JUMP-

ING to).

In our example sequence we have 4 steps. If we wish to cycle continu-

ously around the sequence we need to alter the JUMP cell in the step (4)

control grid. The cell currently has a default value of '0'. Therefore

each time step (4) is completed the program JUMPS to step (5). Here a

control grid containing no data whatsoever is found. The sequence is



-41-

broken and the message 'execution fault at step (4)' is displayed. Dis-
rupting the program flow in this way has allowed us to run our sequence
through a single time only. This has minimised confusion in other
sections and simplified the learning process.

The flow sequence for the existing JUMP condition is:

PARK POSITION STEP (1)

EXAMPLE
SEQUENCE

start

STEP (2)

STEP (3)

STEP (4)

STEP (5) (EMPTY STEP) - 'EXECUTION FAULT'

If we now change the jump cell in the step (4) control grid from '0' to
'2' the sequence will JUMP to step (2) upon each completion of step (4).

The flow sequence will then be:

PARK POSITION STEP (1)

start

EXAMPLE
SEQUENCE

STEP (2)

STEP (3)

VERTICAL POSITION

HORIZONTAL POSITION

STEP (4) 'RIGHT ANGLE' POSITION

JUMP TO STEP (2)



-42-

1. Press <STEP> <4> <ENTER>
2. Press <JUMP> <2> <ENTER> JUMP COMMAND

Now run the sequence.
3. Press <RUN> <RUN>.

The program will now cycle around the sequence of steps continuously.
Note that the Park Position is not included in the cycle.

Press <HOLD> when you wish to halt the cycle. The cycle should be broken
at the end of the step in which you pressed <HOLD>.

Imagine now that we had written a sequence and accidentally omitted one
or more of the steps. If the sequence was of any considerable length,
correcting such an error would be very inconvenient without use of the
<JUMP> command. The command allows the user to insert an additional
step(s) between two existing steps in a sequence.

We will insert two new steps between step (3) and step (4) in the ex-
ample sequence. We will call the new steps step (10) and step (11).

The flow sequence will then be:

PARK POSITION STEP (1)

start

STEP (2)

STEP (3) STEP (10)
EXAMPLE WAIT FOR 8 SECS
SEQUENCE

JUMP TO STEP (10) STEP (11)

STEP (4) JUMP TO STEP (4)
(RATE 4)

JUMP TO STEP (2)

The program will reach step (3) and upon completion of that step trans-
fer to step (10). The program jumps back to step (4) of the example se-
quence upon completion of step (11).



-43-

1. Press <EDIT> to return to edit.

2. Press <STEP> <3> <ENTER>

The step (3) information grid should now show on the monitor screen.

3. Press <JUMP> <10> <ENTER> (JUMP TO SUPPLEMENTARY SEQUENCE).

4. Press <STEP> <10> <ENTER>.

The information grid for step (10) should now show on the monitor

screen.

5. Press <DRIVE>.

NOW USE THE MOTION KEYS ON THE KEYPAD TO CREATE A NEW ROBOT

POSITION.

6. Press <LEARN> when you are satisfied with the new position.

7. Press <STEP> <STEP> to display the following step data grid, i.e.
that for step (11).

8. Press <DRIVE>.

Again use the motion keys on the control keypad to create a new
robot position.

9. Press <LEARN> when you are satisfied with the new position.

10. Press <JUMP> <4> <ENTER> (Jump back to step (4) of

the example sequence).

11. Press <STEP> <1> <ENTER>

12. Press <DRIVE> Returns robot to

Park Position.

13. Press <LEARN>

Now run the program.
14. Press <RUN> <RUN>.



-44-

The robot will then: Perform steps (2) and (3)

JUMP to step (10)

Perform steps (10) and (11)

JUMP to step (4)

Perform step (4)

JUMP to step (2)

4.2.5 The Demonstration Sequence

Note: In the following tables <ENTER> will be shown as <e>.

1. The first thing we have to do is: stop the robot executing the
current sequence. Follow the procedure in table 1.

TABLE 1
KEYPAD SEQUENCE COMMENT

(1) (2)

<HOLD> Halts the current sequence.

<EDIT> Returns to edit.
<STEP> <1> <e> Fetches step 1.

<DRIVE> Gets robot to GO to step 1.
<EDIT> Returns to edit.

<CLEAR> <1> <e> <4> <e> Clears current program.
<EDIT>
<PR0G> Display asks for sequence No.

<-> <1> <e> Demonstration sequence is transferred.
See section 11 for listings.

2. The demonstration sequence has now been down loaded. Tutor text can
be toggled ON/OFF by successive key strokes of <EDIT>. Run the
first part of the sequence by carrying out the instructions detailed
in table 2.



-45-

KEYPAD SEQUENCE

(1)

TABLE 2

COMMENT

(2)

<STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<RUN>

<RUN>

Robot holds at park position.
Step 1 is displayed.

Step 2 is displayed.

Step 3 is displayed.
Note the 7 second delay.

Step 4 is displayed.

Step 5 is displayed.
Note the jump to step 1.

Message displayed:

"Sequence -1 starting at STEP 1"

Message displayed:

"Press <HOLD> to halt execution".
Robot commences sequence.

The next part of the demonstration introduces INPUT, OUTPUT, WAIT

and JUMP and their use in MODE 1. The robot control unit has four

input connections and four output pairs (see Fig 6.1). These are

for use when the robot works in conjunction with other automated

tools. You will now need the decision box connected at para 2.4.

To proceed, carry out the instructions detailed in table 3.



-46-

KEYPAD SEQUENCE

(1)

TABLE 3

COMMENT

(2)

<HOLD>

<EDIT> <STEP>

<JUMP>

<RUN>

<STEP>

Press <STEP> as required:

<EDIT>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<RUN> <RUN>

Stops the current sequence.

Displays step 5 for editing.

Cancel jump to step 1.

Allows entry to this part of the
sequence

Allows robot to move through each
step, holding each time.

until "HOLDING AT STEP 6" and step
6 parameters are displayed.
Note: output 3 is set.

To get back to edit.

Step 7 is displayed. Note: output
3 has been cancelled (-3).

Step 8 displayed. Note that only
commands are displayed. This is
MODE 1, a "conditional jump". If
input 3 on the controller is not set
within 5 seconds (WAIT 5) then the
next step is step 6, otherwise step
9. The decision box can be used to
provide input 3.

Displays step 9.

Displays step 10. Note the jump to
step 6.

Starts the sequence running.

4. This part of the demonstration sequence introduces MODE 3, in which

position values of 500 are used to determine the sign of the rel

ative step. For example a value of 525 means add 25 to the value of

the previous limb position whilst 460 means subtract 40;

i.e.

new limb position = previous limb position + (position value - 500).

Note: 500 is the mid range position and as the position values are

stored as two unsigned bytes in the computer. Therefore when teach-

ing the robot in MODE 3, the differences in limbs position value

between successive steps must be less than 500.



-47-

In step 15 of this sequence the JUMP is set to -1: it is the signal

to return from a subsequence. It points the program to the line

after the line from which the jumps occured. (See Fig 4.2.1).

To proceed carry out the instructions detailed in table 4.

KEYPAD SEQUENCE

(1)

<HOLD>

<EDIT> <STEP> <8> <e>

<JUMP> <0> <e>

<STEP> <10> <e>

<JUMP> <0> <e>

<RUN>

<STEP>

Press <STEP> as many

times as required to

reach step 11.

<EDIT>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<RUN> <RUN>

TABLE 4
COMMENT

(2)

Stop the current sequence.

Displays step 8 for editing.

Remove the jump to step 6.

Displays step 10 for editing.

Removes the jump to step 6.

Allows entry to this part of the
sequence.

Moves robot to next step of sequence.

To get back to edit. Note: jump to
14 of step 11.

To display step 12. Note: jump to 14.

To display step 13. Note: jump to 11.

To display step 14. Note: Mode 3.

To display step 15. Note: Mode 3 and
jump -1. (Return from subsequence).

Start sequence running.

Introducing MODE 4

5. In this mode the robot moves as in mode 2, from its point of origin

to its destination, searching for a specified INPUT which may be

expected somewhere along its path. When found, the search path is

abandoned and the next step executed. If the specified INPUT is not

generated then the robot will execute the next step on reaching its

destination. To proceed, carry out the instructions detailed in

table 5.



-48-

Steps 14 and 15
form the subsequence

Fig 4.2.1 Demonstration Sequence Step 11 to Step 15



-49-

TABLE 5
KEYPAD SEQUENCE COMMENT

(1) (2)

<HOLD> Stop the current sequence.
<EDIT> <STEP> <1> <3> <e> Displays step 13 for editing.

<JUMP> <16> <e> Remove the jump to step 11 and
replace it with a jump to step 16.

<RUN> Allows entry to the sequence.
<STEP> Moves robot to next step of sequence.

Press <STEP> as many times
as required to reach step 16.

<EDIT> To get back to edit. Step 16 displayed.
<STEP> <STEP> Step 17 displayed. Note: Mode 1 with

input 1 set. This is the indefinite
wait. The robot holds this step un-
til input 1 is present.

<STEP> <STEP> Step 18 displayed. Note: this is
MODE 4 and has INPUT 2 set.

<STEP> <STEP> Step 19 displayed. Note: this is MODE
4 and has INPUT 3 set as well as JUMP.

<RUN> <RUN> Starts sequence running.
Use the decision box as appropriate
and note what happens when the
inputs are not forthcoming.

Introducing MODE 5

6. In this mode the robot behaves as in mode 4, but also stores the
position at which a particular input was sensed. These self taught
positions are then available to be used as servo motion commands in
later steps of the sequence. To proceed, carry out the instructions
detailed in table 6.

7. When you are satisfied that you understand the operations, try
running the complete sequence from step 1.



-50-

KEYPAD SEQUENCE

(1)

TABLE 6
COMMENT

(2)

<HOLD>

<EDIT> <STEP>

<JUMP>

<RUN>

<STEP>

Press <STEP> as many times
as required to reach step 20.

<EDIT>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<STEP> <STEP>

<RUN>

<STEP>

Stop the current sequence.

Displays step 19 for editing.

Remove the jump to step 16.

Allows entry to the sequence.

Moves robot to next step of sequence.

<STEP>

<STEP>

<STEP>

<EDIT>

<LIST><2><l><e><2><9><e>

<EDIT>
<STEP><2><0><e>

<JUMP><2><5><e>

<RUN><RUN>

To get back to edit. Step 20 displayed.

Step 21 displayed. Note: Mode 5,
input 4 set and JUMP 26.

Step 22 displayed, MODE 5.
Note: INPUT and JUMP.

Step 23 displayed, MODE 5.
Note: INPUT and JUMP.

Step 24 displayed, MODE 5.
Note: INPUT and JUMP.

Step 25 displayed MODE 2.

Step 26 displayed MODE 2. Note the
zero values for the servo motions.

Step 27 displayed. Note zero values.

Step 28 displayed. Note zero values.

Step 29 displayed. Note zero values.

Step 30.

Allows entry to the sequence, which
we will run one step at a time.

Moves robot to next step in sequence.
Press input 4 on the decision box at
arbitrary point during movement.

As above, press input 3 on decision
box at an arbitrary point during
movement.

As above, press input 1.

As above, press input 2.

To get back to editor.

List steps 21 to 29. Note: steps 26
to 29 now have data in them which
relates to the position at which
the input was set.

Edit step 20.

Steps 21 to 24 have served their
purpose, therefore jump to 25.

Runs the sequence.



-51-

4.3 Additional Position Programming Techniques

Recall that the previous section (4.1.1) used a technique known as
'Point to Point' programming to teach the robot its position inform-
ation. The motion keys on the keypad were used to alter the robot's
position. When the desired position was attained the position data was
fed to a display grid and consequently taught to the robot.

The following three procedures offer the user other programming methods.
You will find each method suitable to a particular robot application.

Halt the previous sequence if you have not already done so.

Press <EDIT> to return to edit.
Press <STEP> <1> <e>.
Press <DRIVE> to get the robot to drive to step 1.
Press <shoulder> drive key until shoulder position indicates 400.
Press <elbow> drive key until elbow position indicates 100.
Press <LEARN> to store this step.
Press <EDIT> to return to edit.

Clear the previous sequences as follows:

Press <CLEAR> <2> <e> <3> <0> <e> clearing steps 2 to 30.
Step 1 is to be retained as our park position.
Press <EDIT> to return to edit.

4.3.1 Lead-by-the-Nose

Lead by the nose is used to manually move the robot to a desired
position. The robot chooses its own path to the desired position when
the sequence is executed.

We will now teach the robot the same steps as in section 4.1.1 using
this different programming technique.

PROGRAMMING PROCEDURE

1. Press <STEP> <2> <ENTER> to display the step (2) information grid.

2. Press <DRIVE>. The robot is then ready for motion commands.



-52-

This time however, we will not use the motion controls on the key-
pad. Instead we will manually move the robot to our desired position
- the 'vertical position'.

CAUTION: When <LEAD> is pressed the computer will bleep for about 5
seconds and the the robot's dynamic braking will be released. Ensure
that the robot is supported.

Note for BBC users: the computer does not bleep and must be support-
ed prior to pressing <LEAD>.

3. Press <LEAD>, wait for the computer to start bleeping and then (and
only then) SUPPORT THE ROBOT IN YOUR HANDS.

4. Lead the robot slowly and gently to the vertical position to match
the display values of Fig 4.1.2.

5. Press <HOLD> to restore dynamic braking.

6. Press <LEARN> to store the position.

7. To move to the next step press <STEP> <STEP>.

8. Repeat sub paragraphs 3 to 7 for steps 3 and 4, which should be
aligned with Figs 4.1.3 and 4.1.4 respectively.

9. To get back to edit with tutor press the <EDIT> key after the
<LEARN> key has been pressed to store the last posture position.

10. Run the sequence and think about what has to be done to make the
sequence repetitive.

You will notice that the robot moves from position to position, but the
path it takes is not necessarily that used in the programming stage. The
computer records the desired end point and chooses the robot's path to
that end point when the step is being executed.

If the user requires to teach the robot the actual path it is to take in
reaching the desired end point, then Continuous Path Programming is
used.



-53-

4.3.2 Continuous Path Programming

The sequences you have created up to now have caused the MA2000 to move
to distinct positions described by the 'posture' numbers ('positional
grid' numbers) at each step (e.g the PARK position is 500 350 100 500
500 500).

When you run your program the robot moves between these positions in an
efficient way, choosing the actual path itself so as to minimise the
time between positions.

In some cases it might be necessary for the robot to follow a specific
path between the positions, for instance if it is welding, paint spray-
ing or even writing. The PATH key on the key pad accesses this facility
to the user.

To teach the MA2000 a CONTINUOUS PATH it is necessary to have the host
computer memory mapped out differently from when the continuous path is
not being used.

Halt the sequence if you have not already done so. Return to the tutor
text and get the robot to move to the park position (step 1).

PROGRAMMING PROCEDURE

1. Press <CLEAR> <2> <ENTER> <4> <ENTER> to ensure that steps 2 to 4
information grids are empty.

2. Press <STEP> <2> <ENTER> to display the step (2) data grid.

3. Press <DRIVE>. The robot is then ready for motion commands.

Again we will manually move the robot arm.

In any sequence there can be only 1 step which is continuous path.
With the standard software loaded (MA2000 disc) there is enough
memory in the IBM microcomputer for at least 50 or 60 seconds of
Continuous Path teaching, but if you teach for less than this time,
you can still only have 1 step containing continuous information.



-54-

CAUTION; When <PATH> is pressed the computer will bleep for about 5
seconds then the robot's dynamic braking will be released. Ensure
that the robot is supported.

Note for BBC users: Unless you have answered 'yes' to the question
"CONTINUOUS PATH (Y/N)?" on initialisation then you will not be able
to do this. Once <PATH> is pressed, dynamic braking is released
immediately and the computer does not give any warning bleeps.
SUPPORT THE ROBOT IN YOUR HANDS NOW.

4. Press <PATH>, wait for the computer to start bleeping and then (and
only then) SUPPORT THE ROBOT IN YOUR HANDS.

5. Now gently and slowly lead the robot through the chosen path taking
care not to move the arm out of limits.

Note: The continuous path is stored in the computer memory as a
series of u steps. When the memory is full the computer will bleep
and dynamic breaking will be restored. It is quite possible that
your arm will tire before computer memory space is exhausted.

6. Press <HOLD> to restore dynamic braking.

7. Press <LEARN> to store the steps.

8. Press <EDIT> to get back to edit.

9. Press <STEP> <3> <ENTER> to display the step (3) information grid.

10. Press <DRIVE>

The robot is now ready for drive motion commands.

11. Use the motion keys on the keypad to create a position of your own
choice.

12. Press <LEARN>

13. Press <JUMP> <2> <ENTER> JUMP COMMAND to cycle around the sequence.

14. Park the robot.

Press <RUN> <RUN> to execute the program.



-55-

The robot will follow the path you taught it in step (2) (the Con-
tinuous Path) and continue to the step (3) position. The sequence
will cycle around until you press <HOLD>.

If you accidently move the robot arm OUT OF LIMITS when Continuous
Path Programming, use the Robot Test Procedure (see section 3) to
bring the robot back into LIMITS and sort the Continuous Path pro-
gram again.

i

You will notice that the RATE cell for the continuous path control
grid will automatically become 5. This is the RATE DEFAULT value
when operating in the Continuous Path mode.

A rate value of 6 or 7 gives an execution speed of approximately
that used during programming. Rate 9 will take about half the
teaching time, and RATE 1 would last up to 30 minutes.

4.3.3 Offline Programming

Offline programming uses the host computer's keyboard to set all the
cells in the position and control grids to whatever value is required.

Halt the sequence by pressing <HOLD>.

PROGRAMMING PROCEDURE

1. Press <EDIT> on the keypad. Ensure that this is the edit with tutor
mode.

2. Press <LEAD> on the keypad, the display now reads:

OFFLINE INPUT of SEQUENCE STEPS

Type

M for Robot to MOVE to the Positions.

Note: For version 4A (XYZ) the display prompts will first ask
whether programming is to be in posture values or XYZ co-ordinates.
Press <P> for posture values and the above prompt will be displayed.

3. Press <M> on the host computer keyboard as we wish the robot to
move. The display now reads:



-56-

OFFLINE INPUT of SEQUENCE STEPS
with Robot MOVING

Stored sequence number 0
Contains 4 steps & 0 CPu steps
Room for 250 steps & 1406 CPu steps

To return to EDIT type a ZERO STEP No.

Type STEP No.

4. Type in <4> for step number 4 followed by <RETURN>.

5. The control grid is now displayed. Type in new values of RATE,
MODE, INPUT, OUTPUT, WAIT and JUMP, pressing <RETURN> after each
value is entered. By just pressing <RETURN> the previous values
will be entered.

6. The posture grid will now be displayed. Type in the posture values
for WAIST, SHLDR, ELBOW, PITCH, YAW, ROLL and GRIP; pressing
<RETURN> after each value is entered.

7. You will then be asked for the next step number; in this way a
complete sequence can be taught 'offline'.

The sequence steps can be input in any order, not necessarily in
order of ascending step number. You can input the same step number
several times if you change your mind or make a mistake. You can
overwrite steps in an existing sequence, or add steps, or fill in
the gaps, etc. The advantage of programming this way is that the
robot itself is not required to move. An entire sequence can be in-
put using the microcomputer alone.

If you wish to get back to the keypad, then when asked for the next
step number type in 0 followed by RETURN.



-57-

5. CONTROL KEYPAD

We have made considerable use of the control keypad, perhaps without
realising the significance of individual keys. What follows, details
the function of these keys.

5.1 Main Control Keys

<RUN> The sequence steps are executed continuously, subject to
process inputs and wait instructions contained within the
steps.

<HOLD> Sequence halts at END of the current step.

<STEP> Operational when on HOLD, enables the user to execute the
sequence step by step.

<EDIT> Operational when on HOLD, causes entry to the sequence EDIT-
ing functions which are selected using the edit-function
keys.

5.2 Multi-Function Keys

The multi-function keys yield their different meanings in a logical
manner:

<top left> The EDIT function as marked in the top left hand corner.

<top right>The NUMERIC value, following the selection of an EDIT
function. Numeric entry is terminated by ENTER, shown as <e>
in the following description.

<centre> The MOTION DRIVE functions following a keystroke to <DRIVE>.

<STEP> As well as its use under HOLD, STEP is used in the EDIT
functions to select a new step,
e.g. <STEP> <7> <e> to select step 7
or: <STEP> <STEP> to select the following step

(i.e. Single Step).

<PR0G> Sets up file number for the taught sequence.

e.g. <PROG> <nn> <e>. The file number can be any positive

number which is terminated by the normal enter key. Negative

numbers are reserved for special system use.



-58-

<LOAD> Instructs the computer to search for and load the specified

sequence file from the casette.

<SAVE> Instructs the computer to dump the sequence file to the
cassette. LOAD & SAVE are only accessible immediately
following the sequence numbering function,
e.g. <PROG> <nn> <e> <LOAD>

<COPY> Enables a block of steps to be copied into another block:

e.g. <COPY> <4> <e> <8> <e> copies steps 4 to 8 inclusive <2>
<0> <e> <2> <4> <e> into steps 20 to 24.

<FUNCTION> This key is used to access special system utility functions,
some of which should only be used under guidance (section
5.4).

<LIST> Lists sequence steps, e.g. <LIST> <5> <e> <7> <e> will list
steps 5 through to 7 inclusive. To list one step, e.g. 5,
then <LIST> <5> <e> <5> <e>.

<CLEAR> Clears sequence steps, i.e. set all items to 0.
e.g. <CLEAR> <1> <2> <e> <1> <5> <e> will clear steps 12
through to 15 inclusive. The steps are also listed after
being cleared.

<RATE> Set up entered value in the appropriate item in the sequence
step.

<MODE> e.g. <MODE> <1> <e>

<OUT> or <OUT> <-> <2> <e>
<WAIT>
<JUMP> or <JUMP> <2> <9> <e>

<ESCAPE> Any of the functions involving entry of numeric values can be
terminated before taking effect by pressing the <ESCAPE> key.
This can also be used to escape from a SAVE/LOAD request, or
from an unintentional function selection.

<RUN> Causes exit from EDIT in HOLD mode.

<DRIVE> Only operational when in EDIT. Causes entry to the DRIVE
function.



-59-

5.3 Drive Function Keys

Whenever <DRIVE> is selected during an EDIT, the robot will move to take
up the position described by the STEP currently being editted. Once the
robot has finished moving, the DRIVE motion keys can be used to drive
the robot to a new position.

Two keys are used to control each motion, one to increase the position
value, one to decrease it, as shown.

The pneumatic gripper is toggled ON/OFF by pressing the <GRIP> key.

SLOW DRIVE - this is automatically selected on entry to DRIVE.

Successive keystrokes to the same key (or holding the key down) will
gradually increase, or decrease, the position of the motion.

RAPID DRIVE - pressing <DRIVE> a second time switches from slow drive to
rapid drive. Only one motion at a time may be moved during
EDIT, and the movement stops when the motion key is re-
leased.

Further pressing of <DRIVE> will toggle between SLOW & RAPID drive.

To exit from DRIVE: press either:

<LEARN> To save current arm positions. (This is only operational
when in Drive mode, see above.)

<ESCAPE> To retain previously learnt arm positions, i.e. to cancel all
the DRIVE motions which have been imposed since the beginning
of the edit of this current STEP.

5.4 Utility Functions

The <FUNCTION> key on the keypad enables certain utility functions to be
called up by the user. These are accessed with EDIT by pressing
<FUNCTION> and then a <NUMBER> followed by <ENTER>. Some functions also
request a time period to be entered for which they are active. This is
entered in the usual way, e.g. <2> <0> <e> for 20 seconds. The others
are exited by pressing <ESCAPE>.



-60-

<FUNCTI0N> number

<1> View the current status of the process inputs for test
purposes.

<2> Enable the process outputs to be set for test purposes, e.g.
pressing <2> <e> <-> <2> <e> in response to SET process out-
put would switch on output 2 and then switch it off again.

<9><0> Report the keypad number as each key is pressed.

<9><1> Report the positional errors.

<9><2> Report the actual positions in ADC bits, where the range 500-
3500 represents the span angle of 270° for major axes, and
180° for minor axes.

Note: The MA2000 resolves to 3000 bits but only controls to
1000.

<9><3> Report the motor powers.

<9><9> Report the current P.I.D. terms in the feedback loops of each
of the motions, and allow them to be changed in the range
1-19. It is recommended that these terms be altered by no
more than 2 units at any session, so that the effect of the
change on the robot's response can be monitored. Very
violent movements can be caused by inexperienced use of this
feature and an "access code" is required before alterations
can be made.

Note: Functions 90-91 first ask for a time in seconds for which the
reporting should last.



RATE
shoulder

MODE
elbow

IN
pitch

OUT
yaw

WAIT
roll

JUMP
gripper

-61-

6. DESCRIPTION OF AN MA2000 SEQUENCE

Following the introduction to robot sequences in Section 4 (where the
DEMONSTRATION SEQUENCE was run), this section describes sequences in
more detail.

An MA2000 sequence consists of a number of steps. Each step contains 12
items comprising 6 control commands and 6 position commands. These are
displayed on the screen in the following format:

waist

The six motion positions have the range 0 to 999. A pneumatic gripper
is fitted which has position values of 0 and 1.

RATE OF MOVEMENT

The RATE sets the speed at which the MA2000 moves between the positions
contained in the sequence steps. RATE can have values 1 to 9.

For fine control, set the RATE to 1.

MODE OF MOVEMENT

Nine different modes of control are available on the MA2000.

MODE 1 executes interface INPUT/OUTPUT and WAIT and JUMP commands. In
MODE 1 no move commands are sent to the robot.

If no INPUT channel is specified within a MODE 1 step, then any
other MODE 1 commands within the step will be executed
unconditionally. See below for descriptions of OUTPUT, WAIT
and JUMP.

If an INPUT channel is specified within a MODE 1 step, then the
other MODE 1 commands within the step will be acted upon
together as a complex conditional command. The sequence will
WAIT a specified number of seconds whilst the status of the
named INPUT is scanned. If the channel is SET (i.e. is ON) at



-62-

the beginning of the WAIT period or becomes SET during the WAIT
period, then any specified OUTPUT will be immediately switched
and the next step of the sequence will be obeyed. Otherwise,
on expiry of the WAIT period, the sequence will JUMP to the
step number specified by the JUMP command.

If an INPUT channel is specified by a negative number, then the
effect of the INPUT status will be the logical inverse of that
described above. In this case, if the channel is NOT SET (i.e.
is OFF) at the beginning of the WAIT period or becomes NOT SET
during the WAIT period, then any specified OUTPUT will be
immediately switched and the next step of the sequence will be
obeyed. Otherwise, on expiry of the WAIT period, the sequence
will JUMP to the step number specified by the JUMP command.

MODE 2 moves through INTERMEDIATE steps with speed as set by RATE, un-
til it reaches the positions contained in the step.

MODE 3 is as for 2, but moves are RELATIVE to the current position
rather than to an absolute position. This is the "MOTION
RELATIVE" mode.

MODE 4 is as for 2, but SEARCHING for a specified INPUT; when found,
the search path for the step is abandoned.

MODE 5 is as for 4, but also STORES the position of the motions at the
moment the specified input was set. These self-taught
positions are then available to be used as servo-motion
commands in later steps of the sequence.

MODE 6 is reserved for CONTINUOUS PATH operations. MODE 6 cannot be
selected via the keypad, but is selected automatically when
CONTINUOUS is specified.

MODEs 7 and 8 cause a branch to user-written BASIC procedures at line
10000 onwards and on return the I/O are executed as in MODE 2.

MODE 9 performs various utilities with the RATE command being used to
select which is executed and the WAIT specifying the duration
in seconds. No MOVE commands are sent to the robot.



-63-

MODE 9 with RATE = 1 - report the current positional errors.
2 - report the current actual measured positions.
3 - report the current motor powers.
4 - perform a CONDITIONAL JUMP to the next step in

the sequence as a function of the motor power.

PROCESS INPUT

Four process inputs are available (see Fig 6.1).

A zero means ignore inputs.

A positive value (1 to 4) will cause the sequence to look for that input
channel to be ON, and a negative value will cause the sequence to look
for that input channel to be NOT ON (see MODE 1 above).

OUTPUT

Four process outputs are available (see Fig 6.1).

A zero means "leave the status of all process outputs unchanged".

A positive value (1 to 4) switches ON the specified output channel and
a negative value switches that output channel OFF.

All outputs can be on together, but not more than one can be set by a
single step.

WAIT

WAIT instructs the sequence to wait for the specified number of seconds,
with a maximum of 255.

WAIT is also used in conjunction with Modes 1 and 9.

JUMP

JUMP indicates the next sequence step to be executed.

A zero means that there is no JUMP, and control passes to the following
step in the ordinary way.

A positive number causes the sequence to JUMP to the specified step.



TYPICAL INPUT CIRCUIT



-65-

-1 causes return from a subsequence. Control passes to the step follow-

ing the one which invoked the subsequence. Nesting is not allowed.

CONDITIONAL JUMP

When used with MODE 1 with INPUT and WAIT set, JUMP is obeyed condition-

ally.

SEQUENCE EXECUTION

Execution order in MODE 1 steps is described earlier in section 6 and

shown in Fig 7.1.

Each MODE 2 sequence step is executed in the following order:

(a) The robot moves to the positions set in the MOTION commands

subject to MODE and RATE. The gripper is set at the end of the

movement.

(b) If INPUT not 0, then the sequence waits indefinitely for the spec-

ified input state.

(c) If OUTPUT not 0, then the specified output state is set.

(d) If WAIT not 0, then execution is delayed for the specified number

of seconds. This wait is additional to (b) above.

(e) If JUMP is 0, >1, or -1, then control either passes to the follow-

ing step, or JUMPs to the specified step or subsequence, or

returns from a subsequence. (See JUMP, section 5.2.)

NOTE A <RUN> and <EDIT>

Having moved out of RUN or HOLD into EDIT to make a sequence change, on

returning to RUN, the system will recommence execution from the step to

which the MA2000 had last been driven, not from the step at which the

last command edit was made. This is to reduce the danger of the MA2000

following an obstructed path after being commanded to drive to steps out

of the desired sequence.

If the last EDIT command was a DRIVE (either to an existing position or

to a new position) then that step will be taken as the continuation

point upon re-entering RUN.



-66-

NOTE B REPEATABILITY

To achieve the best repeatability for any set position it is advisable
to approach the position in the slower RATEs, thus the selection of
faster RATEs should only be used for rapid slewing to an approximate
position short of the final desired position. The following STEP should
contain the final position which should be approached by a slower RATE.
Inertia effects can be minimised by the selection of two or more
approach STEPS, the first after the fast move at a high RATE with the
following STEP or STEPs at progressively slower RATEs for final
positioning.

NOTE C Use of MODE 3. "MOTION RELATIVE" or "MOVE RELATIVE"

When driving to a "blank step" which is to be a MODE 3, "MOVE RELATIVE",
then the MODE must be set to 3 BEFORE the DRIVE command is given. DO
NOT set the RATE at this stage.

When EDITing a sequence of MODE 3 steps always approach the step to be
EDITed through the sequence, starting from a suitable absolute position.
Remember DRIVEing to an existing MODE 3 step will move the robot
relative to its CURRENT position.

NOTE D Use of MODE 5: SEARCH and LEARN

A step containing a safe absolute position should always be executed
immediately prior to a series of SEARCH and LEARN steps, this will be
used by the operating system as a default position in the event of an
unsuccessful search.

NOTE E The WATCHDOG TIMER

A "watchdog" time-out circuit is fitted to the MA2000 interface board.
This will automatically cause the motor controller to disable after
about 3 seconds if it does not receive select signals from the computer.

NOTE F Use of MODES 7 and 8

These modes cause a jump to BASIC procedures written by the user in the
procedure called "PROC user (I,J)". Normally this will consist of
messages to the operator. A default procedure is at line 10000.



-67-

Calculations can be performed but CARE must be taken NOT TO AMEND any
existing variables. It is strongly advised that TecQuipment be consult-
ed about such use as THIS FACILITY REQUIRES KNOWLEDGE OF THE ROBOT
SOFTWARE.

NOTE G INDEFINITE WAIT or "WAIT FOREVER"

In a MODE 1 command, if the step specified in the JUMP is the current
step, then the sequence will loop until the named input is switched, and
will then execute the next step. By this means the robot can be in-
structed to "wait forever" until a switch is pressed. For example:

STEP 7 ) 0 1 1 0 5 7

A non-zero WAIT must be specified, and here a nominal WAIT of 5 seconds
is used. The sequence loops through this one STEP until input 1 is set,
and then the sequence proceeds to step 8, etc. This kind of logic can
be extended to more complex decision loops, for example:-

STEP
STEP
STEP
STEP

7)
8)

9)

10)

0

0

0

0

1

1

1

1

1

0

2

0

0

0

0

0

1

0

1

0

9

23

7

84

Here, when INPUT 1 is set, control jumps to STEP 23, and when INPUT 2 is
set, control jumps to STEP 84. These steps may initiate discrete activ-
ities and then return control to the decision loop at step 7.

In a MODE 2 STEP a non-zero INPUT command causes an indefinite wait, but
when the named INPUT is set, control merely passes to the next STEP in
the sequence.



-68-

7. USE OF MODES

If you feel confident about teaching the robot, it is time to learn how

to use the different modes available. If you do not feel confident do

not read the remainder of this chapter yet as it will confuse you.

To illustrate the different modes the following sequence will be used as

the example:

The robot takes a test tube from a conveyor, places it on a balance

which records its weight, then empties the contents of the test tube

into a disposal unit. The robot then puts the empty test tube in a rack

and takes another test tube which it puts in the conveyor. The conveyor

then indexes around one space and a reagent is added to the test tube.

ACTION

move to conveyor; jump to step 50

move to balance; jump to step 56

move to rack;

search for test tube in top rack; input 3;

conditional jump 100

move clear of rack; jump to step 50

move to conveyor; jump to step 66

move conveyor; set output 1

wait for indexing signal from conveyor input 2;
stop conveyor; cancel output -1

start dispenser; set output 4

wait till dispenser finished; wait for input 2;
conditional jump 100

jump to step 1;

move close to conveyor/rack

move up to test tube; close gripper

lift test tube clear of conveyor/rack; jump -1

test tube above balance

test tube on balance; open gripper;
wait 5 seconds for reading

positions as 57; close gripper

lift clear of balance

move over disposal unit

tip test tube; wait 10 seconds

MODE

2

2

3

4

1

1

2

1

1

3

STEP

1

2

3

4

5

6

7

8

9

10

11

12

50

51

52

56

57

58

59

60

61



-69-

62 turn test tube upright; jump -1

66 position as 52

3 61 position as 51; open gripper

68 position as 50; jump -1

1 100 sound claxon for operator; set output 5

MODE 1 Control Commands Only

MODE 1 is used when only control instructions are required and the robot

is to stay still. Having reached the position at which the control

instructions are required press <STEP> <STEP> for a new step, then

<MODE> <1> <e>. (<e> = <ENTER>). Only the control instructions will be

displayed, initially set to zero. Values for INPUT, OUTPUT, WAIT and

JUMP may be obeyed as described earlier. The exception is a CONDITIONAL

JUMP which can be made if an input, a wait and a jump are specified in

the same step.

The controller will perform the instructions according to the logic in

Fig 7.1.

This means that if you want to set an output before receiving an input

you must have two different steps, the first containing the output

command and the second containing the input command.

If you want an output to be set on condition that an input is received

then you put the output in the same step as the input.

If an input command has been given but no input is received within the

specified time the sequence will jump to the step specified in the JUMP

command. However the sequence will not jump until the time specified in

WAIT has elapsed.

Note that if the jump is zero this will not be taken as a jump to step 0

but will be ignored and the following step will be executed.

In the example of the test tubes, once the weighing has taken place the

conveyor must be indexed one place and the reagent dispensed. So after

the test tube has been replaced in the conveyor the sequence enters

MODE 1.



-70-

FIG 7.1 Mode 1 Logic

Note: This logic is followed in Mode 1. Use of Input in other Modes

does not give conditional jumping.



-71-

First an output is set to move the conveyor around:

RATE MODE IN OUT WAIT JUMP

Step 8 0 1 0 1 0 0

Next the conveyor is prevented from indexing around and around; the

position signal is examined and then the conveyor is stopped:

Step 9 0 1 2 - 1 0 0

Now to operate the dispensing unit:

Step 10 0 1 0 2 0 0

Because of the nature of the dispensing unit the robot controller waits

20 seconds for an input from the dispensing unit to say the reagent has

been added:

Step 11 0 1 1 0 20 100

If the input is not received within 20 seconds the sequence will jump to

step 100 where the output will set off an alarm to tell the operator the

system has malfunctioned. If the input is received the sequence goes on

to step 12 which returns to the beginning of the sequence.

MODE 2 Move to Absolute Positions

Since you have been using MODE 2 until now it needs very little explain-

ing. MODE 2 makes the sequence move through incremental positions with

speeds as set by RATE until it reaches the final positions contained in

the step.

MODE 3 Move Relative to Last Position

MODE 3 steps are most usefully used within subsequences.

MODE 3 enables the robot to perform a subsequence in different places

with the operator only having to teach the robot the subsequence once

and then instructing the robot at which places it is to perform the sub-

sequence. In our example the robot performs 3 subsequences - the pick-

ing up of the test tubes from the conveyor and rack; the weighing

sequence; and replacing the test tubes.

The step in which the jump-to-subsequence command is given is the all



-72-

important step. The position of such a step is the position from which

the subsequence motions increase or decrease. If this initial step is

not taught accurately all attempts at subsequences will fail.

If you are about to program a part of a sequence that you know is going

to be a subsequence, first decide on a step number much further on in

the sequence which will be the subsequence. In our example step 100 has

been chosen as the start of the pick-up subsequence. In the step at

which you are holding put in <JUMP> <1> <0> <0> <e>. Now press <STEP>

<1> <0> <0>. Do not press <STEP> <STEP>.

BEFORE PRESSING THE DRIVE KEY PRESS <MODE> <3> <e>.

Do not set the rate yet, in fact make sure the rate is 0 at this point.

The step co-ordinates will show absolute positions whilst in DRIVE. You

can now press <DRIVE> and the motion keys to make up your subsequence

going from step to step as normal.

When a MODE 3 step is learnt, the display positions are automatically

converted from the actual robot position to relative positions; the

number 500 is used as the datum (for example 430 indicates that the step

will decrease the angle of the joint by 70 units, 500-430). MAKE A NOTE

OF THE CO-ORDINATE NUMBERS which the robot is moved to, this saves time

later on. When you have finished your subsequence press <JUMP> <-> <1>.

This will make the sequence go back to the step following the step which

contained the jump command for the subsequence.

Now you can carry on teaching the sequence in MODE 2. When you reach

the next position where you want the subsequence to be performed you

just enter the JUMP command.

If you want the robot to perform the subsequence in the same place as

before, the step which includes the jump-to-subsequence command must

have the same co-ordinates as last time. In the example the weighing

subsequence occurs twice at the same place at both steps 2 and 9. So to

make sure step 9 is the same as step 2, step 9 was taught its position

by pressing <COPY> <2> <e> <2> <e> <9> <e> <9> <e>. This copied step

2's position into step 9. (Copying a single step is a little cumbersome



-73-

but this format allows large blocks of steps to be moved about in one
operation). Then the jump to step 56 was entered. At step 62 the
sequence will return to step 10.

However if the robot is to perform the subsequence at a different place,
as in the picking up and replacing subsequences, it is important that
the step containing the jump is at the correct place for the subsequence
to take place. This is where the co-ordinate numbers you have written
down come in useful. The numbers are either more than 500 or less than
500. The difference between the number and 500 is the number of
increments the motion will move from where it is NOW.

Editing MODE 3 steps is tricky. To edit a series of MODE 3 steps you
must start from an appropriate absolute (MODE 2) step and drive to alter
and re-learn the MODE 3 steps in their correct sequence. Great care
must be taken as when you are "driving" to the step the robot will move
relative to where it is now - even if it was already "at" the MODE 3
step.

So to make sure your robot is in the right place move it using the key
pad to the first position you want it to go to in the subsequence.
Since you know the number of increments moved between this place and the
step which is to contain the jump, subtract or add the number of
increments applicable to each axis (do this on paper it is easier) then
move the robot motions to the results you have just worked out. This
should be done very slowly and carefully as it is important that the
step before the subsequence is accurate or else the subsequence will not
be performed accurately.

Picking up of the test tube in the example can be equated to this. Step
1 was to move to the conveyor ready for step 100 which would take the
robot just clear of the conveyor ready to pick up the test tube.

Step A must be exactly the same distance from the rack as step 1 was
from the conveyor.

Caution When using subprograms and relative motion, there are two very

easy traps to fall into:



-74-

(i) Never, ever, press <RUN> after creating a subprogram. If you do
the Robot will move relative to the final position in the
subprogram which will almost always cause excessive movement or
collision. After all, you have designed your subprogram to arrive
at its final location, not depart from it.

(ii) Never, ever, put a subprogram in a loop. The relative increments
will add together and drive the Robot out of limits.

MODE 4 Search

MODE 4 enables the robot to perform searches. To do this requires some
form of sensor. In the example a simple micro switch is fitted inside
at the back of the gripper. When using MODE 4 you teach the robot the
end position of the search and tell it what input to expect. If the in-
put is found the robot will stop and go on to the next step as a result
of the input being found. It will not continue to the position given in
the step if an input is found. It should be noted that if the distance
to be searched is not small the robot will move in an arc rather than a
straight line, particularly if only one motion is to be moved.

In our example the robot requires an input from the gripper switch at
step 3 to locate a test tube. The robot will move from its present
position to another position further along the rack which has been spec-
ified. This step was taught in MODE 4 so that if the robot controller
receives the input before reaching the specified position further along
the rack, the robot will abandon its search and the sequence will go
immediately to the next step. The search can be followed by a
conditional branch step also looking for input 3 (MODE 1). If input 3
is not received the sequence jumps to step 100 to alert the operator.



-75-

8. PROGRAMMING GUIDELINES

Assuming that you are now fairly conversant with the keypad, the screen
display and the various robot motions, you will be keen to know how,
quickly and efficiently, to teach the robot a sequence that will perform
your task. There are a number of hints and techniques that can be
passed on in the light of experience, most of which are common sense.

"Keep the limitations of the robot in perspective"

The "repeatability" of the robot at full reach is approximately +/- 2mm.
This means that at any of the step positions there is a possible vari-
ation of up to 4 mm. Thus if the robot is to pick or place anything it
is vital to take this into account. For example, in picking up an
object, the open gripper jaws should clear the part by at least 2 mm in
order to clear it every time. Likewise when placing an object "down" or
"in", similar clearances must be provided. An alternative line of
attack is to use taper fits, bevelled edges etc, although this is only
applicable if modifications are possible to the equipment with which you
are working.

"Keep the mechanical arrangements simple"

Although not strictly a programming guideline it is worth repeating the
recommendation made in the installation section to keep the movements of
the robot as simple as possible. This can be achieved by arranging
pick-up and put-down locations to be easily accessed by the movement of
one or perhaps two motions. For example, to pick up a can of soup from
a flat surface it should be possible to move the robot to the pick up
position by lowering the shoulder only. Likewise loading the chuck of a
lathe should only need the robot to swivel on its rotate motion.

"Use the cart-before-the-horse technique"

When teaching a "PLACE" sequence it is best to start with the robot in
the placing position. Give this a step number 5 or 10 higher than the
beginning of the sequence. Then move BACK one step and if possible use
just one motion to move the robot to a position where the gripper is
clear of the "place" position and learn this step. Then if the robot is



-76-

unlikely to clout anything between this and the park position, the step
before this can be the park position. If the robot needs to avoid fixed
objects between the gripper "clear" and the park positions then you will
obviously need more steps to have a tighter control over its trajectory.

If you teach a sequence in the opposite order (i.e. the order in which
the robot will move and thus the order you would logically expect) you
will find that you will move some joints unnecessarily as you approach
the part.

"Avoid re-teaching"

It is possible to make considerable savings in programming effort if you
appreciate that often you can use the same step a number of times.

Using the previous example in which we were placing a part, we can illu-
strate this point. We will assume that the previous part of the
sequence used steps 20, 21 and 22 (20 being the park position). Having
placed the part, it may be that you wish to move the robot back to the
park position. The only difference between the approach and retract
needs to be that the gripper will be open in the latter. If step 22
places the part in the correct position and opens the gripper then step
23 can be the same as step 21 and step 24 the same as step 20.

The <COPY> command can be used to copy step 20 into step 24 and step 21
into step 23 (see para 5.2 for details).

"Use subsequences wherever possible"

As with conventional programming, the use of subsequences can greatly
reduce the programming effort. If at some points in your taught
sequence you use the same set of steps, then it is a good idea to parcel
these moves into a subsequence. For example, if you were handling test
tubes in which a washing cycle was repeated a number of times, the wash
cycle could be made into a subsequence. At the relevant points in the
sequence you would include a JUMP instruction to the starting step of
your subsequence. To return from a subsequence a command JUMP -1 is
given which returns the sequence to the step following that which
contained the JUMP-to-subsequence instruction.



-77-

This is all well and good when you are using MODE 2 (or absolute co-
ordinate) program steps. Even better use of subsequences is made when
you teach the subsequence in MODE 3 (or relative co-ordinate) steps.

If you have to pick up a part from a number of locations then it is
possible that the majority of the joint movements are common to each
pick-up operation with only the rotate angle differing. The common
joint movements would then be taught in MODE 3 and stored as a sub-
sequence. In the sequence the robot would be moved only in the rotate
axis to the correct angle for each part and then a JUMP would be made to
the pick-up subsequence.

If you change the position of any of the parts you will now be able to
correct the sequence by changing one step only; the step from which you
call the subsequence.

Remember, however, that subsequences cause movements in "Robot Joint
Space", not in cartesian space.



-78-

9. PROCESS INPUTS AND OUTPUTS

Refer to figure 2 for the connections to the four process inputs and

four process outputs.

Process Inputs

To energise an input a connection from an input terminal to the ground
terminal is required.

A switch, open-collector transistor or opto-sensor may be used providing
the load current of 10 mA is obtained.

If additional TTL logic is fitted on the inputs, it should be capable of
providing the required input current of 1.5 mA.

The inputs are opto-isolated from the host computer signals to ensure
that external noise and earth loop volt drops do not cause a mal-
function.

ON NO ACCOUNT MUST UNAUTHORISED CONNECTIONS BE MADE TO THE
MOTOR CONTROLLER OR HOST COMPUTER CIRCUITRY

Process Outputs

Each output consists of a miniature relay which can be energised under
program control. The contacts are rated at 24 V d.c. at 1 amp RESISTIVE
load.



-79-

10. FAULT INDICATIONS

Certain conditions will cause the audible alarm on the MA2000 computer

to sound.

(a) The most likely cause of the alarm sounding during the execution
of a program step is that too high a rate has been selected, caus-
ing at least one motor to be running at its maximum speed. This
would not cause any damage but is not advisable. A lower rate
setting for that step should be selected.

(b) If the MA2000 computer detects invalid status information from the
micro-controller, indicating that the micro-controller is not
operating correctly, the alarm will sound and

CONTROLLER STATUS INVALID

will appear on the screen. Press the RESTART button to reset the
system. Hold the button in for a period before releasing it to
allow the hardware resets to fully operate. Check also that the
computer select switch on the robot controller is in the correct
position (B for IBM working).

(c) If during the execution of a programmed step or during drive
either the emergency stop is pressed or AUTO is de-selected, then
the alarm will sound and the robot path frozen. Releasing the
emergency stop or returning to AUTO will allow the path to be
resumed.



-80-

11. DEMONSTRATION SEQUENCE

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

0)

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

500

500

800

250

800

400

500

990

800

10

500

800

400

500

420

500

7
400

7
500

6
800

4
250

7
800

6
200

5
500

7
800

0

8
800

6
250

7
500

6
350

7
400

3
350

3
580

6
500

0

2
100

2
500

2
400

2
200

2
500

2
500

2
500

2
400

1

2
450

2
400

2
500

2
450

2
400

3
450

3
380

2
500

1

0
500

0
500

0
400

0
400

0
400

0
400

0
500

0
400

3

0
400

0
500

0
500

0
400

0
400

0
400

0
500

0
500

1

0
500

0
500

0
500

0
500

0
500

0
500

3
500

-3
500

0

0
500

0
500

0
500

0
500

0
500

0
500

0
550

0
500

0

0
500

0
500

0
500

7
500

0
500

0
500

5
500

0
500

5

0
500

0
500

0
500

0
500

5
500

0
500

0
500

0
500

0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

0
0

6

0
0

6
0

14
0

14
0

11
0

0
0

-1
0

0
0

0



-81-

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

200

800

500

200

800

200

200

500

0

0

0

0

500

4
400

3
600

7
500

2
400

3
400

3
400

4
400

7
500

5
0

7
0

5
0

4
0

7
500

4
200

4
550

2
500

5
400

5
400

5
400

5
400

2
500

2
0

2
0

2
0

2
0

2
500

2
400

3
400

0
500

4
400

3
400

1
400

2
400

0
500

0
0

0
0

1
0

0
0

0
500

0
500

0
600

0
500

0
500

0
500

0
500

0
500

-4
500

0
0

0
0

0
0

4
0

0
500

0
500

0
500

0
500

0
500

0
500

0
500

0
500

0
500

0
0

2
0

2
0

0
0

5
500

0
0

16
0

0
0

26
0

27
0

28
0

29
0

0
0

0
0

0
0

0
0

0
0

20
0



M A 2 0 0 0 p B U T T O N B O X

CONNECTION AND USE

The TecQuipment robot control button box, MA2000p, which is often re-

ferred to as the 'decision box', can be used to control running sequences

and to simulate external switches. The box contains four normally open

(push-to-make) switches, labelled 1 2 3 +4, and one normally closed (push

to break) switch labelled -4. A toggle switch is used to select either

button +4 or button -4.

The cable attached to the box has six cores, red (RD), yellow (YW), green

(GN), blue (BE), black (BK), and white (WE). These should be connected

to the rear of the robot micro controller/interface as follows:

Terminals 1 and 2 form the emergency stop loop.

Terminal 3 is the return from the signal wire on the robot end effector.

Terminal 4 is the ground or earth.

Terminals 5 through 8 are INPUT channels 4,3,2,1 respectively.

Terminals 9 through 16 are the four OUTPUT pairs.



When the MA2000 sensing grippers are used, the toggle switch on the

decision box should be switched to -4, and the INPUT value -4 should be

used in sequence steps to detect an object within the gripper (see

MA2000a Experiments Kit Manual, section 7,2, but note that the decision

box takes the place of the wire from terminal 3 to terminal 5).

With the toggle switched to +4, the button box can be used to control a

decision loop, as in Note G, p.28 of the MA2000 manual "The Open

University Robot". This style of sequence control is used in SEQUENCE

1234 supplied with MA2000 software Iss.3.80 onwards.

An alternative use in simpler sequences is to halt the execution at

certain critical phases, by introducing an INPUT request to be satisfied

by the operator via the button box when he is sure that it is safe or

useful to proceed. For example, putting INPUT 1 in STEP 1 of a sequence

which cycles (i.e. last step has a JUMP 1) will mean that the sequence

will halt after every cycle until button 1 is pressed.

AAW/1285/i


